5/5 - (2 امتیاز)

کاربرد پردازش موازی

تمام کمکی را که می توانید دریافت کنید.

اگر محاسبات موازی یک اصل مرکزی داشته باشد، ممکن است همین باشد. برخی از محاسبات پیچیده دیوانه‌واری که از سخت‌افزار امروزی درخواست می‌شود، به قدری سخت است که بار محاسباتی باید توسط چندین پردازنده متحمل شود، و به طور مؤثر هر کاری را که انجام می‌شود «موازی» می‌کند. نتیجه؟ کاهش تاخیر و زمان تکمیل توربوشارژ.

شاید برجسته‌ترین فشار به سمت موازی‌سازی در حدود سال 2006 اتفاق افتاد، زمانی که نیروگاه سخت‌افزار فناوری انویدیا به سراغ Wen-mei Hwu، استاد مهندسی برق و کامپیوتر در دانشگاه Illinois-Urbana Champaign رفت. انویدیا در حال طراحی واحدهای پردازش گرافیکی (GPU) بود – که به لطف تعداد زیادی رشته و هسته، پهنای باند حافظه بسیار بالاتری نسبت به واحد پردازش مرکزی سنتی (CPU) داشتند – به عنوان راهی برای پردازش تعداد زیادی پیکسل.

هوو، که اکنون پدرخوانده محاسبات موازی محسوب می‌شود، به Built In گفت: «آن‌ها پرسیدند که آیا می‌خواهم این را به برنامه‌های عمومی محاسبات موازی تعمیم دهم یا نه.

این به طور موثر باعث استفاده از GPU برای محاسبات همه منظوره – و در نهایت، برای سیستم‌های موازی انبوه نیز شد. باور کنید یا نه، مداری که رایانه شما برای ارائه گرافیک های فانتزی برای بازی های ویدیویی و انیمیشن های سه بعدی استفاده می کند، از همان معماری اصلی مدارهایی ساخته شده است که پیش بینی دقیق الگوی آب و هوا را ممکن می کند. وحشی، ها؟ و زیرساخت موازی GPUها همچنان قدرتمندترین کامپیوترها را تامین می کند.

Hwu گفت: «اگر به کار برای جامعه علمی امروز نگاه کنید، رایانه‌های جدید، مانند [ابر رایانه‌های IBM] Summit، و همچنین نسل بعدی، مانند Aurora، اکنون عمدتاً بر اساس این مدل هستند.

این مدل یک اسب کار برای کاربردهای پزشکی و تجاری نیز هست و همه چیز را از کشف دارو گرفته تا شبیه‌سازی‌های بین ستاره‌ای و تکنیک‌های فیلم پس از تولید را تسهیل می‌کند.

در اینجا فقط چند روش وجود دارد که محاسبات موازی به بهبود نتایج و حل موارد غیرقابل حل قبلی کمک می کند.

علوم، تحقیقات و انرژی

وقتی روی برنامه Weather Channel در تلفن خود ضربه می زنید تا پیش بینی روز را بررسی کنید، از پردازش موازی تشکر کنید. نه به این دلیل که تلفن شما چندین برنامه را اجرا می کند – محاسبات موازی نباید با محاسبات همزمان اشتباه گرفته شود – بلکه به این دلیل که نقشه های آب و هوا و الگوهای آب و هوا به حجم محاسباتی جدی موازی نیاز دارند.

محاسبات موازی ستون فقرات سایر مطالعات علمی است، از جمله شبیه‌سازی‌های اخترفیزیکی، پیمایش لرزه‌ای، کرومودینامیک کوانتومی و غیره. در اینجا نگاهی دقیق تر به چند مورد است.

کاربرد پردازش موازی

نحوه استفاده از محاسبات موازی: نجوم به کندی حرکت می کند. میلیون‌ها سال طول می‌کشد تا ستاره‌ها با هم برخورد کنند، کهکشان‌ها ادغام شوند یا سیاه‌چاله‌ها اجرام نجومی را ببلعند – به همین دلیل است که اخترفیزیکدانان برای مطالعه این نوع فرآیندها باید به شبیه‌سازی‌های کامپیوتری روی بیاورند. و چنین مدل های پیچیده ای به توان محاسباتی عظیم نیاز دارند.

به عنوان مثال، یک پیشرفت اخیر در مطالعه سیاهچاله ها به لطف یک ابر رایانه موازی اتفاق افتاد. محققان راز چهار دهه‌ای را حل کردند و ثابت کردند که درونی‌ترین قسمت ماده که به دور آن می‌چرخد، سپس درون آن فرو می‌ریزد، سیاه‌چاله‌ها با آن سیاه‌چاله‌ها همسو هستند. این کلید کمک به دانشمندان برای درک بهتر نحوه رفتار این پدیده هنوز مرموز است.

محقق الکساندر چخوفسکی از دانشگاه نورث وسترن که با دانشگاه آمستردام و دانشگاه آکسفورد در این مطالعه همکاری می کند، گفت: «این جزئیات در اطراف سیاهچاله ممکن است کوچک به نظر برسند، اما به شدت بر آنچه در کهکشان به عنوان یک کل اتفاق می افتد تأثیر می گذارد. آنها کنترل می کنند که سیاهچاله ها با چه سرعتی می چرخند و در نتیجه سیاهچاله ها چه تأثیری بر کل کهکشان هایشان دارند.

نحوه استفاده از محاسبات موازی: یکی از بزرگترین بازیگران صنعت نفت در حومه هیوستون زندگی می کند و بابا نام دارد. اما Bubba بزرگ‌تر از طلای سیاه نیست، بلکه یک ابررایانه (در میان سریع‌ترین‌های روی کره زمین) است که متعلق به شرکت ژئوپردازش استرالیایی DownUnder GeoSolutions است.

پردازش داده‌های لرزه‌ای مدت‌هاست که به ارائه تصویر واضح‌تری از لایه‌های زیرزمینی کمک کرده است، که برای صنایعی مانند نفت و گاز ضروری است. با این حال، ابررایانه امروزه در حفاری انرژی عملاً امری غیرمعمول است – به ویژه هنگامی که الگوریتم ها مقادیر عظیمی از داده ها را پردازش می کنند تا به حفاری ها در استخراج زمین های دشوار مانند گنبدهای نمکی کمک کنند. (تایتان انرژی فرانسوی توتال از قدرتمندترین ابررایانه تجاری جهان استفاده می کند.)

ستون فقرات Bubba توسط هزاران پردازنده Intel Xeon Phi که در حمام روغن سرد خنک می شوند، تشکیل شده است، تکنیکی که امکان پردازش موازی با کارایی بسیار بالا را فراهم می کند. امید این است که با فروش دسترسی موازی به برق به شرکت‌های شخص ثالث، تجهیزات انرژی کمتری مجبور شوند سیستم‌های خود را با کارایی کمتر بسازند.

کاربرد پردازش موازی

نحوه استفاده از محاسبات موازی: هر ماه، وزارت کشاورزی ایالات متحده ارقام عرضه و تقاضا را برای تعدادی از محصولات عمده برآورد می کند. پیش‌بینی‌های بسیار مهم می‌تواند بر همه افراد تأثیر بگذارد، از قانون‌گذارانی که در تلاش برای تثبیت بازار هستند تا کشاورزانی که می‌خواهند امور مالی خود را مدیریت کنند.

سال گذشته، محققان دپارتمان منابع طبیعی و علوم زیست محیطی U of I با ترکیب داده‌های بیشتر – محاسبات رشد محصول و اطلاعات آب و هوای فصلی و همچنین ارقام ماهواره‌ای – که سپس با استفاده از الگوریتم‌های یادگیری ماشینی پردازش شده، در صدر پیش‌بینی استاندارد صنعت فدرال قرار گرفتند. توسط ابرکامپیوتر داده موازی دانشگاه، پتااسکیل بلو واترز. پیش‌بینی آنها به سرعت تقریباً پنج بوشل در هر هکتار دقیق‌تر شد.

در سال 2019، این تیم چشم پیش‌بینی خود را به عملکرد گندم استرالیا با نتایج مشابه چشمگیر معطوف کرد.

← مرکز محاسبات سریع شبیه‌سازان امیرکبیر  →

اینجا کلیک کنید!

دنیای تجاری

حتی اگر محاسبات موازی اغلب حوزه موسسات تحقیقاتی دانشگاهی و دولتی است، دنیای تجاری قطعاً مورد توجه قرار گرفته است.

Hwu گفت: «صنعت بانکداری، معامله‌گران صنعت سرمایه‌گذاری، ارزهای دیجیتال – این جوامع بزرگی هستند که از پردازنده‌های گرافیکی زیادی برای کسب درآمد استفاده می‌کنند.

محاسبات موازی نیز ریشه در دنیای سرگرمی دارد – با توجه به اینکه GPU ها ابتدا برای بارهای گرافیکی سنگین طراحی شدند، جای تعجب نیست. همچنین برای صنایعی که به دینامیک سیالات محاسباتی متکی هستند، یک تحلیل مکانیکی است که چندین کاربرد تجاری بزرگ دارد. در اینجا یک نگاه دقیق تر است.

نحوه استفاده از محاسبات موازی: تقریباً تمام جنبه‌های اصلی بانکداری امروزی، از امتیازدهی اعتبار گرفته تا مدل‌سازی ریسک و کشف تقلب، با GPU تسریع شده است. به نوعی، انحراف از تجزیه و تحلیل سنتی مبتنی بر CPU اجتناب ناپذیر بود. تخلیه GPU در حدود سال 2008 آغاز شد، درست زمانی که قانونگذاران چندین دور از قوانین مالی پس از سقوط را آغاز کردند. هیچام لاهلو، یکی از بنیانگذاران Xcelerit در سال 2017 به The Next Platform گفت: «اکنون یافتن بانکی با ده‌ها هزار GPU تسلا غیرمعمول نیست.» «و بدون آن فشار اجباری مقررات اینطور نبود.»

یکی از اولین پذیرندگان JPMorgan Chase بود که در سال 2011 اعلام کرد که تغییر از پردازش ترکیبی تنها با پردازنده گرافیکی و پردازشگر گرافیکی، محاسبات ریسک در مراکز داده خود را تا 40 درصد بهبود داده و 80 درصد صرفه جویی را به همراه داشته است. اخیراً، Wells Fargo از پردازنده‌های گرافیکی انویدیا برای فرآیندهای متفاوتی مانند تسریع مدل‌های هوش مصنوعی برای ریسک نقدینگی و مجازی‌سازی زیرساخت دسکتاپ خود استفاده کرد.

پردازنده‌های گرافیکی نیز خود را در مرکز یک روند مالی در سال ۲۰۱۹ یافتند: شوق استخراج ارز دیجیتال. اما فروش تراشه‌ها پس از آن رونق و رکود خاص از آن زمان تثبیت شده است.

نحوه استفاده از محاسبات موازی: اگر کاراکتر برد پیت را دیدید که در Ad Astra مسائل مربوط به پدر بین کهکشانی خود را حل می کند یا آخرین دور ارسال قاتل با طراحی دقیق جان ویک، کار دستی پردازش موازی را نیز مشاهده کرده اید. هر دو با استفاده از استودیوی Blackmagic Design’s DaVinci Resolve، یکی از معدود مجموعه های پست پروداکشن استاندارد هالیوود (از جمله Adobe Effects و Avid Media Composer) که دارای ابزارهای شتاب دهنده GPU هستند، رنگ آمیزی شده اند. Hwu گفت: “رندرهای با کیفیت بالا بر اساس آنچه آنها تکنیک ردیابی پرتو می نامند، همه اکنون از برخی از این پردازنده ها استفاده می کنند.” او افزود که تصحیح رنگ و انیمیشن سه بعدی، هر دو معمولاً از پردازش موازی GPU استفاده می کنند.

نحوه استفاده از محاسبات موازی: زمانی که راننده فرانسوی رومن دوما سال گذشته یک نمونه اولیه فولکس واگن الکتریکی را رانندگی کرد و در مسابقات اتومبیلرانی به شکوه رسید – رکورد صعود به قله Pikes را با تکمیل اولین پایان زیر هشت دقیقه ای در پیست افسانه ای شکست داد و طوفانی را آغاز کرد. توری از بهترین پایان های تمام دوران – مسلماً این برد به همان اندازه که برای ماشین های الکتریکی قابل توجه بود برای محاسبات قابل توجه بود.

مهندسان حداقل در دو جنبه کلیدی بر نرم افزار Anasys Fluent تکیه کردند: اجرای یک شبیه سازی مجازی دوره، و یافتن تعادل ایده آل وزن کم و از دست دادن کشش آیرودینامیکی برای سیستم خنک کننده باتری.

چنین خنک‌سازی یکی از تعدادی شبیه‌سازی به اصطلاح دینامیک سیالات محاسباتی (CFD) است که کاربران می‌توانند روی Ansys اجرا کنند، برنامه‌ای که به راحتی از شتاب GPU پشتیبانی می‌کند. این یکی از نمونه‌های باارزش‌تر از این است که چگونه محاسبات موازی پرقدرت به ابزاری برای همه انواع تحقیقات CFD در همه چیز از بهینه‌سازی موتور احتراقی پیش‌بینی آب و هوا تبدیل شده است.

فناوری نوظهور به روش‌های بی‌شماری چشم‌انداز پزشکی را تغییر می‌دهد، از واقعیت مجازی که دژنراسیون ماکولا را بهبود می‌بخشد تا پیشرفت‌ها در چاپ زیستی بافت و اندام‌ها و راه‌های بی‌شماری آمازون برای تأثیر بیشتر بر مراقبت‌های بهداشتی. محاسبات موازی سال‌هاست که حضور خود را در این عرصه احساس می‌کند، اما آماده است تا پیشرفت‌های بیشتری را تقویت کند. در اینجا نحوه انجام آن آمده است.

نحوه استفاده از محاسبات موازی: یکی از اولین صنایعی که به لطف پردازش موازی، به ویژه انقلاب GPU-for-General-Computing، شاهد تغییراتی در دریا بود، تصویربرداری پزشکی بود. امروزه، مجموعه‌ای از ادبیات پزشکی وجود دارد که نشان می‌دهد چگونه محاسبات و پهنای باند بالا منجر به بهبودهای گسترده در سرعت و تعریف تقریباً همه چیز شده است: MRI، CT، اشعه ایکس، توموگرافی اپتیکال و موارد دیگر.

جهش بزرگ بعدی در تصویربرداری پزشکی احتمالاً به طور مشابه با تمرکز موازی خواهد بود و پیشگام موازی Nvidia در خط مقدم قرار دارد. با استفاده از جعبه ابزار اخیراً منتشر شده این شرکت، رادیولوژیست ها می توانند به راحتی به قدرت های هوش مصنوعی دسترسی پیدا کنند، که به سیستم های تصویربرداری کمک می کند تا حجم فزاینده ای از داده ها و وزن محاسباتی را مدیریت کنند. سیستم اهرمی GPU که کلارا نامیده می‌شود، طبق گزارش‌ها به پزشکان اجازه می‌دهد مدل‌های تصویربرداری با داده‌های ده برابر کمتر از آنچه مورد نیاز است ایجاد کنند. از جمله مؤسساتی که قبلاً امضا کرده اند، دانشگاه ایالتی اوهایو و مؤسسه ملی بهداشت هستند.

نحوه استفاده از محاسبات موازی: اگر به پردازش موازی به عنوان یک عروسک تودرتو فکر می کنید، یکی از درونی ترین چهره ها می تواند یک داروی نجات دهنده باشد. برنامه نویسی موازی یک معماری ایده آل برای اجرای شبیه سازی دینامیک مولکولی است که ثابت کرده است در کشف دارو بسیار مفید است.

شرکت تحقیقاتی پزشکی Acellera برنامه های متعددی را توسعه داده است که از زیرساخت بارگذاری قدرتمند GPU ها استفاده می کند: کد شبیه سازی ACEMD و بسته Python HTMD. آنها برای انجام شبیه‌سازی روی برخی از قوی‌ترین رایانه‌های جهان، از جمله تایتان که به دانشمندان کمک کرد تا نحوه ارتباط انتقال‌دهنده‌های عصبی ما را بهتر درک کنند، استفاده شده‌اند. و Acellera با افرادی مانند Janssen و Pfizer برای تحقیقات دارویی شریک شده است.

از آنجایی که محاسبات موازی پیشرفته امکان مطالعه دقیق ماشین‌های مولکولی را فراهم می‌کند، می‌تواند کاربردهای عمده‌ای در مطالعه بیماری‌های ژنتیکی داشته باشد – چیزی که محققان در حال حاضر به دنبال آن هستند.

چگونه از محاسبات موازی استفاده می کند: فراتر از رندر تصویر و تحقیقات دارویی، قدرت تجزیه و تحلیل داده ها در پردازش موازی نویدبخش سلامت عمومی است. یک اپیدمی دلخراش را در نظر بگیرید: خودکشی کهنه سرباز. بر اساس داده های وزارت امور کهنه سربازان، از سال 2014 هر روز حدود 20 جانباز بر اثر خودکشی جان خود را از دست داده اند. این موضوع یکی از معدود موارد ارزشمندی است که توجه واقعی دو حزبی را به خود جلب کرده است.

پس از اینکه VA مدلی را توسعه داد که در الگوهای نسخه‌نویسی و پر کردن مجدد جانبازان قرار می‌گرفت، محققان در آزمایشگاه ملی Oak Ridge توانستند این الگوریتم را روی رایانه‌ای با کارایی بالا 300 برابر سریع‌تر از قابلیت‌های VA اجرا کنند. امید این است که در نهایت از ابرکامپیوتر Summit افسانه ای (و GPU) IBM استفاده شود تا امکان ارسال هشدارهای خطر در زمان واقعی برای پزشکان فراهم شود.

ادمون بگلی، محقق ORNL، گفت: «ما نمی‌خواهیم کهنه سربازان وارد یک کلینیک شوند و از دستشان بروند، زیرا کسی به طور خاص برای تشخیص این علائم آموزش ندیده است. “ما هرگز نمی خواهیم برای رسیدن به کسی دیر باشد.”

مطالب مرتبط:

پردازش موازی

با توجه ‌به تمامی مزایایی که استفاده از ابر رایانه‌ها برای شما ایجاد می‌کند، باید بدانید که تهیه یک ابر رایانه برای شرکت یا سازمان خودتان، امری ساده نیست. خرید یک ابر رایانه مانند خرید یک رایانه معمولی نبوده و هزینه‌ها و سختی‌های خاص خودش را دارد. از سوی دیگر نگهداری و تعمیر ابر رایانه‌ها نیازمند دانش تخصصی و پرداخت هزینه‌های سنگینی است. مشکلاتی که باعث می‌شود بسیاری از افراد از خیر استفاده از ابر رایانه‌ها بگذرند.

اما صبر کنید، همیشه راهی هست! در این میان شرکت‌های زیادی هستند که برای پیشبرد اهداف سایر سازمان‌ها، دست به کرایه ابر رایانه می‌زنند. بدین صورت شما به‌جای اینکه برای انجام پژوهش‌ها و پردازش اطلاعات خودتان بخواهید یک ابر رایانه بخرید، می‌توانید با هزینه‌های بسیار کمتری دست به اجاره ابر رایانه بزنید. شرکت شبیه‌سازان امیرکبیر یکی از بهترین شرکت‌هایی است که به کمک آن می‌توانید یک ابر رایانه کرایه کنید!

شبیه‌سازان امیرکبیر یکی از پیشروترین شرکت‌های خدمات شبیه‌سازی بوده که ابر رایانه‌های خود را با قیمت‌های بسیار کمتری نسبت به سایر رقبا در اختیار سازمان‌ها، افراد و نهادهای مختلف قرار می‌دهد. برای کرایه یک ابر رایانه کافی است تا با مشاورین شبیه‌سازان امیرکبیر تماس بگیرید تا به‌صورت کامل شما را در این امر راهنمایی کنند.( gpu جی پی یو)

جدول زمانی ابررایانه‌ها ساخته شده در جهان

این‌جا جدولی از سریع‌ترین ابررایانه‌های رکورددار همه منظورهٔ موجود در دنیا با سال کسب رکوردشان را می‌بینید. منبع عناوینی که سال ثبتشان قبل از سال ۱۹۹۳ است مختلف است اما برای عناوین بعد از سال ۱۹۹۳ از فهرست پانصد کامپیوتر برتر دنیا استفاده کرده‌ایم.

YearSupercomputerPeak speedLocation
۱۹۴۲Atanasoff–Berry Computer (ABC)۳۰ OPSدانشگاه ایالتی آیووا، Ames, Iowa، USA
TRE Heath Robinson۲۰۰ OPSBletchley Park
۱۹۴۴Flowers Colossus۵ kOPSPost Office Research StationDollis HillUK
۱۹۴۶UPenn انیاک
(before 1948+ modifications)
۱۰۰ kOPSآبردین پروو گراوند، مریلند، مریلند، USA
۱۹۵۴IBM NORC۶۷ kOPSU.S. Naval Proving GroundDahlgren، ویرجینیا، USA
۱۹۵۶MIT TX-۰۸۳ kOPSMassachusetts Inst. of TechnologyLexington، ماساچوست، USA
۱۹۵۸IBM AN/FSQ-۷۴۰۰ kOPS۲۵ U.S. Air Force sites across the continental USA and 1 site in کانادا (۵۲ computers)
۱۹۶۰UNIVAC LARC۲۵۰ kFLOPSآزمایشگاه ملی لارنس لیورمور، کالیفرنیا، USA
۱۹۶۱IBM 7030 “Stretch”۱٫۲ MFLOPSآزمایشگاه ملی لاس آلاموس، نیومکزیکو، USA
۱۹۶۴CDC ۶۶۰۰۳ MFLOPSآزمایشگاه ملی لارنس لیورمور، کالیفرنیا، USA
۱۹۶۹CDC ۷۶۰۰۳۶ MFLOPS
۱۹۷۴CDC STAR-۱۰۰۱۰۰ MFLOPS
۱۹۷۵Burroughs ILLIAC IV۱۵۰ MFLOPSمرکز پژوهشی ایمز ناسا، کالیفرنیا، USA
۱۹۷۶Cray-۱۲۵۰ MFLOPSآزمایشگاه ملی لاس آلاموس، نیومکزیکو، USA (80+ sold worldwide)
۱۹۸۱CDC Cyber ۲۰۵۴۰۰ MFLOPS(numerous sites worldwide)
۱۹۸۳Cray X-MP۹۴۱ MFLOPSآزمایشگاه ملی لاس آلاموسآزمایشگاه ملی لارنس لیورمورBattelleبوئینگ
۱۹۸۴M-۱۳۲٫۴ GFLOPSScientific Research Institute of Computer Complexes، مسکو، USSR
۱۹۸۵Cray-۲۳٫۹ GFLOPSآزمایشگاه ملی لارنس لیورمور، کالیفرنیا، USA
۱۹۸۹ETA۱۰-G/۸۱۰٫۳ GFLOPSدانشگاه ایالتی فلوریدا، فلوریدا، USA
۱۹۹۰NEC SX-۳/۴۴R۲۳٫۲ GFLOPSNEC Fuchu Plant, Fuchu، ژاپن
۱۹۹۳Thinking Machines CM-۵/۱۰۲۴۶۵٫۵ GFLOPSآزمایشگاه ملی لاس آلاموسآژانس امنیت ملی ایالات متحده آمریکا
فوجیتسو Numerical Wind Tunnel۱۲۴٫۵۰ GFLOPSNational Aerospace Laboratory، توکیو، ژاپن
اینتل Paragon XP/S ۱۴۰۱۴۳٫۴۰ GFLOPSآزمایشگاه ملی سندیا، نیومکزیکو، USA
۱۹۹۴فوجیتسو Numerical Wind Tunnel۱۷۰٫۴۰ GFLOPSNational Aerospace Laboratory، توکیو، ژاپن
۱۹۹۶Hitachi SR۲۲۰۱/۱۰۲۴۲۲۰٫۴ GFLOPSدانشگاه توکیو، ژاپن
Hitachi/تسوکوبا، ایباراکی CP-PACS/۲۰۴۸۳۶۸٫۲ GFLOPSCenter for Computational Physics، دانشگاه تسوکوبا، تسوکوبا، ایباراکی، ژاپن
۱۹۹۷اینتل ASCI Red/۹۱۵۲۱٫۳۳۸ TFLOPSآزمایشگاه ملی سندیا، نیومکزیکو، USA
۱۹۹۹اینتل ASCI Red/۹۶۳۲۲٫۳۷۹۶ TFLOPS
۲۰۰۰IBM ASCI White۷٫۲۲۶ TFLOPSآزمایشگاه ملی لارنس لیورمور، کالیفرنیا، USA
۲۰۰۲NEC Earth Simulator۳۵٫۸۶ TFLOPSEarth Simulator Center، یوکوهاما-shi، ژاپن
۲۰۰۴IBM Blue Gene/L۷۰٫۷۲ TFLOPSU.S. Department of Energy/IBM، USA
۲۰۰۵۱۳۶٫۸ TFLOPSU.S. Department of Energy/U.S. National Nuclear Security Administration،
آزمایشگاه ملی لارنس لیورمور، کالیفرنیا، USA
۲۸۰٫۶ TFLOPS
۲۰۰۷

شبیه‌سازان امیرکبیر مفتخر است که با نازل‌ترین قیمت‌ها، انواع خدمات تخصصی شبیه‌سازی و پردازشی را در اختیار مشتریانش قرار می‌دهد. از سوی دیگر سرعت بسیار بالای سیستم‌های این شرکت، اجاره انواع مختلف سیستم‌های رایانه‌ای و ابر رایانه‌ای، سیستم‌های رایانش ابری، سرورهای محاسباتی و پردازش مجازی و… تنها بخشی از خدمات این شرکت است.

همچنین شما می‌توانید از خدمات پس از فروش شبیه‌سازان امیرکبیر استفاده کنید و در صورت بروز هرگونه مشکل و یا ایجاد هر نمونه سوالی، می‌توانید با پشتیبانی این شرکت در ارتباط باشید.

نتیجه‌گیری

قدرت و سرعت ابر رایانه‌های به ‌قدری بالا بوده که انجام محاسبات و پردازش اطلاعاتی که امکان انجام آن با سیستم‌های معمولی وجود ندارد را در کسری از ثانیه انجام خواهد داد. از این‌رو شرکت‌ها و سازمان‌های بسیار زیادی که نیازمند انجام چنین پردازش‌هایی هستند، به استفاده و اجاره ابر رایانه روی می‌آورند. شرکت شبیه‌سازان امیرکبیر یکی از بهترین شرکت‌ها در زمینه کرایه انواع ابر رایانه‌ها بوده که آماده خدمت‌رسانی به شما عزیزان است.

 

لیست ابر رایانه ها جهان 

مرکز ابر رایانه دانشگاه فردوسی مشهد 

مرکز ابررایانه دانشگاه خواجه نصیرالدین طوسی 

مرکز ابر رایانه دانشگاه شریف 

مرکز ابر رایانه دانشگاه حکیم سبزواری 

مرکز ابر رایانه دانشگاه اراک 

مرکز ابررایانه دانشگاه کردستان 

مرکز ابر رایانه دانشگاه کاشان 

مرکز ابر رایانه دانشگاه قم 

مرکز ابر رایانه دانشگاه صنعتی شاهرود 

مرکز ابررایانه دانشگاه صنعتی اصفهان 

مرکز ابر رایانه دانشگاه شیراز 

مرکز ابر رایانه دانشگاه شهید چمران اهواز 

مرکز ابررایانه دانشگاه سمنان 

مرکز ابر رایانه دانشگاه بین المللی امام خمینی 

مرکز ابر رایانه دانشگاه ارومیه 

مرکز ابر رایانه دانشگاه علم و صنعت 

مرکز ابر رایانه دانشگاه تهران 

درباره مرکز داده چه می‌دانید 

کامپیوتر مجازی چیست

hpc چیست 

پردازش ابری 

رایانش ابری 

مزایا و معایب پردازش موازی 

سرور محاسباتی چیست 

سیستم های موازی – هوش شبیه سازی 

پردازش موازی

مزایای برتر رایانش ابری 

قدرتمندترین ابر رایانه های جهان 

پردازش موازی 

محاسبات موازی 

سرور محاسباتی چیست

لیست ابر رایانه های ایران

فناوری ابر رایانه چیست 

سرعت پردازنده چگونه محاسبه می شود 

سرعت پردازنده چیست و چرا اهمیت دارد 

سیستم موازی چیست 

hpc چیست 

انواع ابر کامپیوترها 

نکاتی برای خرید سرور محاسباتی

قیمت خرید ابر کامپیوتر 

ابر رایانه چیست

اجاره سوپر کامپیوتر 

اجاره کامپیوتر قوی 

اجاره سیستم پردازش موازی 

اجاره یک ابر کامپیوتر

رایانش سریع چیست؟

چه-کامپیوتری برای پایتون مناسب است

پردازش موازی در پایتون python 

مزایا و معایب پردازش موازی

پردازش سریع

انواع ابر رایانه ها

کاربرد پردازش موازی 

خرید ابر رایانه

قیمت یک ابر رایانه

اجاره سرور HPC 

پردازش سریع 

کلاستر 

سوپرکامپیوتر

پردازش فوق سریع 

سرور پردازش موازی چیست 

آزمایشگاه پردازش موازی

اجاره کامپیوتر- ارزان 

رایانش ابری

پردازش فوق سریع 

ابر رایانه 

درباره اجاره سرور محسباتی چه باید بدانیم؟

تعرفه رایانش ابری

آزمایشگاه محاسباتی

سیستم مورد نیاز شبیه سازی

پردازش موازی ارزان

حداقل سیستم مورد نیاز برای گوسین 

سیستم مورد نیاز برای لمپس lamps 

پردازش موازی در متلب 

حداقل سیستم مورد نیاز برای شبیه سازی FEM 

حداقل سیستم مورد نیاز برای comsol کامسول

سیستم مورد نیاز برای انسیس ansys

پردازش موازی در متلب 

کامپیوتر قوی برای نرم افزار اباکوس abaqus ✔️

پردازش موازی و پایگاه های داده موازی 

خرید کامپیوتر قوی 

محاسبات موازی 

سیستم پردازش سنگین و تأخیر کم در شبکه‌های حسگر بی‌سیم 

اجاره سرور محاسباتی 

اجاره سیستم کامپیوتری 

اجاره کامپیوترهای قدرتمند محاسباتی

اجاره کامپیوتر در تهران 

کلاستر کامپیوتری 

آشنایی با کامپیوتر محاسباتی قوی 

کامپیوتر محاسباتی قدرتمند 

روش آسان‌سازی پردازش داده با استفاده از عملیات محاسبات سنگین 

تدوینی به‌صرفه‌تر با اجاره کامپیوتر تدوین 

بررسی تأثیر رم در سرعت رندر 

 معرفی 6 کارت گرافیک برتر برای رندر 

تعرفه اجاره سیستم‌های تخصصی مهندسی و پردازش سریع GPU 

همه چیز در مورد سیستم ‌های پردازش گرافیکی و اجاره آنها 

مر کز محاسبات شبیه سازان امیرکبیر

نحوه درخواست اجاره کامپیوتر محاسباتی

شماره تماس:✔️ 09021145350  ✔️ 02188769296

آدرس: تهران خیابان ولیعصر(ع)،دانشگاه صنعتی امیرکبیر، دانشکده مهندسی مکانیک، طبقه منفی یک،  مرکز نوآوری، گروه شبیه‌سازان امیرکبیر

لیست اجاره کامپیوترهای قدرتمند محاسباتی