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PREFACE

The purpose of this book is to provide civil engineering students and practitioners
with simple basic knowledge on how to apply the finite element method to soil
mechanics problems. This is essentially a soil mechanics book that includes tradi-
tional soil mechanics topics and applications. The book differs from traditional soil
mechanics books in that it provides a simple and more flexible alternative using
the finite element method to solve traditional soil mechanics problems that have
closed-form solutions. The book also shows how to apply the finite element method
to solve more complex geotechnical engineering problems of practical nature that
do not have closed-form solutions.

In short, the book is written mainly for undergraduate students, to encourage
them to solve geotechnical engineering problems using both traditional engineering
solutions and the more versatile finite element solutions. This approach not only
teaches the concepts but also provides means to gain more insight into geotechni-
cal engineering applications that reinforce the concepts in a very profound manner.
The concepts are presented in a basic form so that the book can serve as a valuable
learning aid for students with no background in soil mechanics. The main prereq-
uisite would be strength of materials (or equivalent), which is a prerequisite for
soil mechanics in most universities.

General soil mechanics principles are presented for each topic, followed by tradi-
tional applications of these principles with longhand solutions, which are followed
in turn by finite element solutions for the same applications, and then both solutions
are compared. Further, more complex applications are presented and solved using
the finite element method.

xiii
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The book consist of nine chapters, eight of which deal with traditional soil
mechanics topics, including stresses in semi-infinite soil mass, consolidation, shear
strength, shallow foundations, lateral earth pressure, deep foundations (piles), and
seepage. The book includes one chapter (Chapter 2) that describes several elastic
and elastoplastic material models, some of which are used within the framework of
the finite element method to simulate soil behavior, and that includes a generalized
three-dimensional linear elastic model, the Cam clay model, the cap model and
Lade’s model. For undergraduate teaching, one can include a brief description of
the essential characteristics and parameters of the Cam clay model and the cap
model without much emphasis on their mathematical derivations.

Over 60 solved examples appear throughout the book. Most are solved longhand
to illustrate the concepts and then solved using the finite element method embodied
in a computer program: ABAQUS. All finite element examples are solved using
ABAQUS. This computer program is used worldwide by educators and engineers to
solve various types of civil engineering and engineering mechanics problems. One
of the major advantages of using this program is that it is capable of solving most
geotechnical engineering problems. The program can be used to tackle geotechnical
engineering problems involving two- and three-dimensional configurations that may
include soil and structural elements, total and effective stress analysis, consolida-
tion analysis, seepage analysis, static and dynamic (implicit and explicit) analysis,
failure and post-failure analysis, and a lot more. Nevertheless, other popular finite
element or finite difference computer programs specialized in soil mechanics can be
used in conjunction with this book in lieu of ABAQUS—obviously, this depends
on the instructor’s preference.

The PC Education Version of ABAQUS can be obtained via the internet so
that the student and practitioner can use it to rework the examples of the book
and to solve the homework assignments, which can be chosen from those end-of-
chapter problems provided. Furthermore, the input data for all examples can be
downloaded from the book’s website (www.wiley.com/college/helwany). This can
be very useful for the student and practitioner, since they can see how the input
should be for a certain problem, then can modify the input data to solve more
complex problems of the same class.

I express my deepest appreciation to the staff at John Wiley & Sons Publishing
Company, especially Mr. J. Harper, Miss K. Nasdeo, and Miss M. Torres for their
assistance in producing the book. I am also sincerely grateful to Melody Clair for
her editing parts of the manuscript.

Finally, a very special thank you to my family, Alba, Eyad, and Omar, and my
brothers and sisters for their many sacrifices during the development of the book.



CHAPTER 1

PROPERTIES OF SOIL

1.1 SOIL FORMATION

Soil is a three-phase material consisting of solid particles, water, and air. Its mechan-
ical behavior is largely dependent on the size of its solid particles and voids. The
solid particles are formed from physical and chemical weathering of rocks. There-
fore, it is important to have some understanding of the nature of rocks and their
formation.

A rock is made up of one or more minerals. The characteristics of a particular
rock depend on the minerals it contains. This raises the question: What is a mineral?
By definition, a mineral is a naturally occurring inorganic element or compound
in a solid state. More than 4000 different minerals have been discovered but only
10 elements make up 99% of Earth’s crust (the outer layer of Earth): oxygen (O),
silicon (Si), aluminum (Al), iron (Fe), calcium (Ca), sodium (Na), potassium (K),
magnesium (Mg), titanium (Ti), and hydrogen (H). Most of the minerals (74%) in
Earth’s crust contain oxygen and silicon. The silicate minerals, containing oxygen
and silicon, comprise 90% of all rock-forming minerals. One of the interesting
minerals in soil mechanics is the clay mineral montmorillonite (an expansive clay),
which can expand up to 15 times its original volume if water is present. When
expanding, it can produce pressures high enough to damage building foundations
and other structures.

Since its formation, Earth has been subjected to continuous changes caused by
seismic, volcanic, and climatic activities. Moving from the surface to the center of
Earth, a distance of approximately 6370 km, we encounter three different layers.
The top (outer) layer, the crust, has an average thickness of 15 km and an average
density of 3000 kg/m3. By comparison, the density of water is 1000 kg/m3 and
that of iron is 7900 kg/m3. The second layer, the mantle, has an average thickness
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2 PROPERTIES OF SOIL

of 3000 km and an average density of 5000 kg/m3. The third, the core, contains
primarily nickel and iron and has an average density of 11,000 kg/m3.

Within the crust, there are three major groups of rocks:

1. Igneous rocks, which are formed by the cooling of magma. Fast cooling
occurs above the surface, producing igneous rocks such as basalt, whereas
slow cooling occurs below the surface, producing other types of igneous
rocks, such as granite and dolerite. These rocks are the ancestors of sedi-
mentary and metamorphic rocks.

2. Sedimentary rocks, which are made up of particles and fragments derived
from disintegrated rocks that are subjected to pressure and cementation caused
by calcite and silica. Limestone (chalk) is a familiar example of a sedimentary
rock.

3. Metamorphic rocks, which are the product of existing rocks subjected to
changes in pressure and temperature, causing changes in mineral composition
of the original rocks. Marble, slate, and schist are examples of metamorphic
rocks.

Note that about 95% of the outer 10 km of Earth’s crust is made up of igneous
and metamorphic rocks, and only 5% is sedimentary. But the exposed surface of
the crust contains at least 75% sedimentary rocks.

Soils Soils are the product of physical and chemical weathering of rocks. Physi-
cal weathering includes climatic effects such as freeze–thaw cycles and erosion by
wind, water, and ice. Chemical weathering includes chemical reaction with rainwa-
ter. The particle size and the distribution of various particle sizes of a soil depend
on the weathering agent and the transportation agent.

Soils are categorized as gravel, sand, silt, or clay, depending on the predominant
particle size involved. Gravels are small pieces of rocks. Sands are small particles
of quartz and feldspar. Silts are microscopic soil fractions consisting of very fine
quartz grains. Clays are flake-shaped microscopic particles of mica, clay minerals,
and other minerals. The average size (diameter) of solid particles ranges from 4.75
to 76.2 mm for gravels and from 0.075 to 4.75 mm for sands. Soils with an average
particle size of less than 0.075 mm are either silt or clay or a combination of the
two.

Soils can also be described based on the way they were deposited. If a soil is
deposited in the vicinity of the original rocks due to gravity alone, it is called a
residual soil. If a soil is deposited elsewhere away from the original rocks due
to a transportation agent (such as wind, ice, or water), it is called a transported
soil.

Soils can be divided into two major categories: cohesionless and cohesive. Cohe-
sionless soils, such as gravelly, sandy, and silty soils, have particles that do not
adhere (stick) together even with the presence of water. On the other hand, cohe-
sive soils (clays) are characterized by their very small flakelike particles, which
can attract water and form plastic matter by adhering (sticking) to each other. Note
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that whereas you can make shapes out of wet clay (but not too wet) because of its
cohesive characteristics, it is not possible to do so with a cohesionless soil such as
sand.

1.2 PHYSICAL PARAMETERS OF SOILS

Soils contain three components: solid, liquid, and gas. The solid components of
soils are the product of weathered rocks. The liquid component is usually water,
and the gas component is usually air. The gaps between the solid particles are
called voids. As shown in Figure 1.1a, the voids may contain air, water, or both.
Let us discuss the soil specimen shown in Figure 1.1a. The total volume (V ) and
the total weight (W ) of the specimen can be measured in the laboratory. Next,
let us separate the three components of the soil as shown in Figure 1.1b. The
solid particles are gathered in one region such that there are no voids in between,
as shown in the figure (this can only be done theoretically). The volume of this
component is Vs and its weight is Ws . The second component is water, whose
volume is Vw and whose weight is Ww. The third component is the air, which has
a volume Va and a very small weight that can be assumed to be zero. Note that
the volume of voids (Vv) is the sum of Va and Vw . Therefore, the total volume is
V = Vv + Vs = Va + Vw + Vs . Also, the total weight W = Ww + Ws .

In the following we present definitions of several basic soil parameters that
hold important physical meanings. These basic parameters will be used to obtain
relationships that are useful in soil mechanics.

The void ratio e is the proportion of the volume of voids with respect to the
volume of solids:

e = Vv

Vs

(1.1)

The porosity n is given as

n = Vv

V
(1.2)

Voids

Solids

Water

Air Solids

Water

Air

Vs

Vw

Va

Vv
Ww

Ws

0

W V

(a) (b)

FIGURE 1.1 (a) Soil composition; (b) phase diagram.
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Note that

e = Vv

Vs

= Vv

V − Vv

= Vv/V

V/V − Vv/V
= n

1 − n
(1.3)

or

n = e

1 + e
(1.4)

The degree of saturation is defined as

S = Vw

Vv

(1.5)

Note that when the soil is fully saturated, all the voids are filled with water (no
air). In that case we have Vv = Vw . Substituting this into (1.5) yields S = 1 (or
100% saturation). On the other hand, if the soil is totally dry, we have Vw = 0;
therefore, S = 0 (or 0% saturation).

The moisture content (or water content) is the proportion of the weight of water
with respect to the weight of solids:

ω = Ww

Ws

(1.6)

The water content of a soil specimen is easily measured in the laboratory by
weighing the soil specimen first to get its total weight, W . Then the specimen
is dried in an oven and weighed to get Ws . The weight of water is then calcu-
lated as Ww = W − Ws . Simply divide Ww by Ws to get the moisture content,
(1.6).

Another useful parameter is the specific gravity Gs , defined as

Gs = γs

γw

= Ws/Vs

γw

(1.7)

where γs is the unit weight of the soil solids (not the soil itself) and γw is the unit
weight of water (γw = 9.81 kN/m3). Note that the specific gravity represents the
relative unit weight of solid particles with respect to water. Typical values of Gs

range from 2.65 for sands to 2.75 for clays.
The unit weight of soil (the bulk unit weight) is defined as

γ = W

V
(1.8)

and the dry unit weight of soil is given as

γd = Ws

V
(1.9)
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Substituting (1.6) and (1.9) into (1.8), we get

γ = W

V
= Ws + Ww

V
= Ws + ωWs

V
= Ws(1 + ω)

V
= γd(1 + ω)

or

γd = γ

1 + ω
(1.10)

Let us assume that the volume of solids Vs in Figure 1.1b is equal to 1 unit (e.g.,
1 m3). Substitute Vs = 1 into (1.1) to get

e = Vv

Vs

= Vv

1
→ Vv = e (1.11)

Thus,

V = Vs + Vv = 1 + e (1.12)

Substituting Vs = 1 into (1.7) we get

Gs = γs

γw

= Ws/Vs

γw

= Ws/1

γw

→ Ws = γwGs (1.13)

Substitute (1.13) into (1.6) to get

Ww = ωWs = ωγwGs (1.14)

Finally, substitute (1.12), (1.13), and (1.14) into (1.8) and (1.9) to get

γ = W

V
= Ws + Ww

V
= γwGs + ωγwGs

1 + e
= γwGs(1 + ω)

1 + e
(1.15)

and

γd = Ws

V
= γwGs

1 + e
(1.16)

Another interesting relationship can be obtained from (1.5):

S = Vw

Vv

= Ww/γw

Vv

= ωγwGs/γw

e
= ωGs

e
→ eS = ωGs (1.17)

Equation (1.17) is useful for estimating the void ratio of saturated soils based
on their moisture content. For a saturated soil S = 1 and the value of Gs can
be assumed (2.65 for sands and 2.75 for clays). The moisture content can be
obtained from a simple laboratory test (described earlier) performed on a soil
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specimen taken from the field. An approximate in situ void ratio is calculated as
e = ωGs ≈ (2.65 − 2.75)ω.

For a fully saturated soil, we have e = ωGs → Gs = e/ω. Substituting this into
(1.15), we can obtain the following expression for the saturated unit weight:

γsat = γwGs(1 + ω)

1 + e
= γw[Gs + ωe/ω]

1 + e
= γw(Gs + e)

1 + e
(1.18)

Example 1.1 A 0.9-m3 soil specimen weighs 17 kN and has a moisture content of
9%. The specific gravity of the soil solids is 2.7. Using the fundamental equations
(1.1) to (1.10), calculate (a) γ, (b) γd , (c) e, (d) n, (e) Vw , and (f) S.

SOLUTION: Given: V = 0.9 m3, W = 17 kN, ω = 9%, and Gs = 2.7.

(a) From the definition of unit weight, (1.8):

γ = W

V
= 17 kN

0.9 m3
= 18.9 kN/m3

(b) From (1.10):

γd = γ

1 + ω
= 18.9 kN/m3

1 + 0.09
= 17.33 kN/m3

(c) From (1.9):

γd = Ws

V
→ Ws = γdV = 17.33 kN/m3 × 0.9 m3 = 15.6 kN

From the phase diagram (Figure 1.1b), we have

Ww = W − Ws = 17 kN − 15.6 kN = 1.4 kN

From (1.7):

Gs = γs

γw

= Ws/Vs

γw

→ Vs = Ws

γwGs

= 15.6 kN

9.81 kN/m3 × 2.7
= 0.5886 m3

Also, from the phase diagram (Figure 1.1b), we have

Vv = V − Vs = 0.9 m3 − 0.5886 m3 = 0.311 m3

From (1.1) we get

e = Vv

Vs

= 0.311 m3

0.5886 m3
= 0.528



PHYSICAL PARAMETERS OF SOILS 7

(d) Equation (1.2) yields

n = Vv

V
= 0.311 m3

0.9 m3
= 0.346

(e) From the definition of the unit weight of water,

Vw = Ww

γw

= 1.4 kN

9.81 kN/m3 = 0.143 m3

(f) Finally, from (1.5):

S = Vw

Vv

= 0.143 m3

0.311 m3
= 0.459 = 45.9%

1.2.1 Relative Density

The compressibility and strength of a granular soil are related to its relative density
Dr , which is a measure of the compactness of the soil grains (their closeness to
each other). Consider a uniform sand layer that has an in situ void ratio e. It is
possible to tell how dense this sand is if we compare its in situ void ratio with the
maximum and minimum possible void ratios of the same sand. To do so, we can
obtain a sand sample from the sand layer and perform two laboratory tests (ASTM
2004: Test Designation D-4253). The first laboratory test is carried out to estimate
the maximum possible dry unit weight γd−max (which corresponds to the minimum
possible void ratio emin) by placing a dry sand specimen in a container with a
known volume and subjecting the specimen to a surcharge pressure accompanied
with vibration. The second laboratory test is performed to estimate the minimum
possible dry unit weight γd−min (which corresponds to the maximum possible void
ratio emax) by pouring a dry sand specimen very loosely in a container with a
known volume. Now, let us define the relative density as

Dr = emax − e

emax − emin
(1.19)

This equation allows us to compare the in situ void ratio directly with the maximum
and minimum void ratios of the same granular soil. When the in situ void ratio e

of this granular soil is equal to emin, the soil is at its densest possible condition and
Dr is equal to 1 (or Dr = 100%). When e is equal to emax, the soil is at its loosest
possible condition, and its Dr is equal to 0 (or Dr = 0%). Note that the dry unit
weight is related to the void ratio through the equation

γd = Gsγw

1 + e
(1.20)
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It follows that

γd−max = Gsγw

1 + emin
and γd−min = Gsγw

1 + emax

1.3 MECHANICAL PROPERTIES OF SOIL

Soil engineers usually classify soils to determine whether they are suitable for
particular applications. Let us consider three borrow sites from which we need
to select a soil that has the best compaction characteristics for a nearby highway
embankment construction project. For that we would need to get details about the
grain-size distribution and the consistency of each soil. Then we can use available
charts and tables that will give us the exact type of each soil. From experience
and/or from available charts and tables we can determine which of these soils has
the best compaction characteristics based on its classification.

Most soil classification systems are based on the grain-size distribution curve and
the Atterberg limits for a given soil. The grain-size analysis is done using sieve
analysis on the coarse portion of the soil (> 0.075 mm in diameter), and using
hydrometer analysis on the fine portion of the soil (< 0.075 mm in diameter). The
consistency of soil is characterized by its Atterberg limits as described below.

1.3.1 Sieve Analysis

A set of standardized sieves is used for the analysis. Each sieve is 200 mm in diam-
eter and 50 mm in height. The opening size of the sieves ranges from 0.075 mm
for sieve No. 200 to 4.75 mm for sieve No. 4. Table 1.1 lists the designation of
each sieve and the corresponding opening size. As shown in Figure 1.2, a set of
sieves stacked in descending order (the sieve with the largest opening size is on
top) is secured on top of a standardized shake table. A dry soil specimen is then

TABLE 1.1 Standard Sieve Sizes

Sieve No. Opening Size (mm)

4 4.75
10 2.00
20 0.85
40 0.425
60 0.250
80 0.180

100 0.15
120 0.125
140 0.106
170 0.090
200 0.075
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FIGURE 1.2 Typical set of U.S. standard sieves.
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FIGURE 1.3 Particle-size distribution curve.

shaken through the sieves for 10 minutes. As shown in Figure 1.3, the percent by
weight of soil passing each sieve is plotted as a function of the grain diameter
(corresponding to a sieve number as shown in Table 1.1). It is customary to use a
logarithmic horizontal scale on this plot.

Figure 1.3 shows two grain-size distribution curves, A and B. Curve A represents
a uniform soil (also known as poorly graded soil) that includes a narrow range
of particle sizes. This means that the soil is not well proportioned, hence the
expression “poorly graded soil.” In this example, soil A is uniform coarse sand.
On the other hand, curve B represents a nonuniform soil (also known as well-graded
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soil) that includes a wide spectrum of particle sizes. In this case the soil is well
proportioned—it includes gravel, sand (coarse, medium, and fine), and silt/clay.

There are two useful indicators, Cu and Cc, that can be obtained from the grain-size
distribution curve. Cu is the uniformity coefficient, defined as Cu = d60/d10, and Cc

is the coefficient of gradation, defined as Cc = d2
30/(d10d60). Here d10, d30, and d60

are the grain diameters corresponding respectively to 10%, 30%, and 60% passing, as
shown in Figure 1.3. For a well-graded sand the value of the coefficient of gradation
should be in the range 1 ≤ Cc ≤ 3. Also, higher values of the uniformity coefficient
indicate that the soil contains a wider range of particle sizes.

1.3.2 Hydrometer Analysis

Sieve analysis cannot be used for clay and silt particles because they are too
small (<0.075 mm in diameter) and they will be suspended in air for a long time
during shaking. The grain-size distribution of the fine-grained portion that passes
sieve No. 200 can be obtained using hydrometer analysis. The basis of hydrometer
analysis is that when soil particles are dispersed in water, they will settle at different
velocities because of their different sizes. Assuming that soil particles are perfect
spheres dispersed in water with a viscosity η, Stokes’ law can be used to relate the
terminal velocity v of a particle to its diameter D:

v = ρs − ρw

18η
D2 (1.21)

in which ρs is the density of soil particles and ρw is the density of water.
Equation (1.21) indicates that a larger particle will have a greater terminal velocity
when dropping through a fluid.

In the hydrometer laboratory test (ASTM 2004) a dry soil specimen weighing
50 g is mixed thoroughly with water and placed in a graduated 1000-mL glass
flask. A floating instrument called a hydrometer (Figure 1.4) is placed in the flask
to measure the specific gravity of the mixture in the vicinity of the hydrometer
center. In a 24-hour period the time t and the corresponding depth L are recorded.
The measured depth (see Figure 1.4) is correlated with the amount of soil that is
still in suspension at time t . From Stokes’ law, (1.21), it can be shown that the
diameter of the largest soil particles still in suspension is given by

D =
√

18η

[(ρs/ρw) − 1]γw

L

t
(1.22)

in which γw is the unit weight of water. From the hydrometer readings (L versus t)
and with the help of (1.22), one can calculate the percent of finer particles and plot
a gradation curve. The part of curve B (Figure 1.3) with particle diameter smaller
than 0.075 mm is obtained from a hydrometer test.
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FIGURE 1.4 Hydrometer test.

1.4 SOIL CONSISTENCY

Clays are flake-shaped microscopic particles of mica, clay minerals, and other
minerals. Clay possesses a large specific surface, defined as the total surface of
clay particles per unit mass. For example, the specific surfaces of the three main
clay minerals; kaolinite, illite, and montmorillonite, are 15, 80, and 800 m2/g,
respectively. It is mind-boggling that just 1 g of montmorillonite has a surface of
800 m2! This explains why clays are fond of water. It is a fact that the surface
of a clay mineral has a net negative charge. Water, on the other hand, has a
net positive charge. Therefore, the clay surface will bond to water if the latter
is present. A larger specific surface means more absorbed water. As mentioned
earlier, montmorillonite can increase 15-fold in volume if water is present, due
to its enormous specific surface. Montmorillonite is an expansive clay that causes
damage to adjacent structures if water is added (rainfall). It also shrinks when it
dries, causing another type of damage to structures. Illite is not as expansive, due
to its moderate specific surface. Kaolinite is the least expansive.

It is clear that the moisture (water) content has a great effect on a clayey soil,
especially in terms of its response to applied loads. Consider a very wet clay
specimen that looks like slurry (fluid). In this liquid state the clay specimen has
no strength (i.e., it cannot withstand any type of loading). Consider a potter’s clay
specimen that has a moderate amount of moisture. This clay is in its plastic state
because in this state we can actually make shapes out of the clay knowing that it
will not spring back as elastic materials do. If we let this plastic clay dry out for
a short time (i.e., so that it is not totally dry), it will lose its plasticity because if
we try to shape it now, many cracks will appear, indicating that the clay is in its
semisolid state. If the specimen dries out further, it reaches its solid state, where it
becomes exceedingly brittle.
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Atterberg limits divide the four states of consistency described above. These
three limits are obtained in the laboratory on reconstituted soil specimens using
the techniques developed early in the twentieth century by a Swedish scientist. As
shown in Figure 1.5, the liquid limit (LL) is the dividing line between the liquid and
plastic states. LL corresponds to the moisture content of a soil as it changes from
the plastic state to the liquid state. The plastic limit (PL) is the moisture content of
a soil when it changes from the plastic to the semisolid state. The shrinkage limit
(SL) is the moisture content of a soil when it changes from the semisolid state to the
solid state. Note that the moisture content in Figure 1.5 increases from left to right.

1.4.1 Liquid Limit

The liquid limit is obtained in the laboratory using a simple device that includes
a shallow brass cup and a hard base against which the cup is bumped repeatedly
using a crank-operated mechanism. The cup is filled with a clay specimen (paste),
and a groove is cut in the paste using a standard tool. The liquid limit is the
moisture content at which the shear strength of the clay specimen is so small that
the soil “flows” to close the aforementioned groove at a standard number of blows
(ASTM 2004: Designation D-4318).

1.4.2 Plastic Limit

The plastic limit is defined as the moisture content at which a soil crumbles when
rolled down into threads 3 mm in diameter (ASTM 2004: Designation D-4318). To
do that, use your hand to roll a round piece of clay against a glass plate. Being able
to roll a moist piece of clay is an indication that it is now in its plastic state (see
Figure 1.5). By rolling the clay against the glass, it will lose some of its moisture
moving toward its semisolid state, as indicated in the figure. Crumbling of the
thread indicates that it has reached its semisolid state. The moisture content of the
thread at that stage can be measured to give us the plastic limit, which is the verge
between the plastic and semisolid states.

1.4.3 Shrinkage Limit

In its semisolid state, soil has some moisture. As a soil loses more moisture, it
shrinks. When shrinking ceases, the soil has reached its solid state. Thus, the

Solid
Semi-
solid

Plastic Liquid

0 SL PL LL

PI = LL − PL

ω (%)

FIGURE 1.5 Atterberg limits.
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moisture content at which a soil ceases to shrink is the shrinkage limit, which is
the verge between the semisolid and solid states.

1.5 PLASTICITY CHART

A useful indicator for the classification of fine-grained soils is the plasticity index
(PI), which is the difference between the liquid limit and the plastic limit
(PI = LL − PL). Thus, PI is the range within which a soil will behave as a plastic
material. The plasticity index and the liquid limit can be used to classify fine-grained
soils via the Casagrande (1932) empirical plasticity chart shown in Figure 1.6. The
line shown in Figure 1.6 separates silts from clays. In the plasticity chart, the liq-
uid limit of a given soil determines its plasticity: Soils with LL ≤ 30 are classified
as low-plasticity clays (or low-compressibility silts); soils with 30 < LL ≤ 50 are
medium-plasticity clays (or medium-compressibility silts); and soils with LL > 50
are high-plasticity clays (or high-compressibility silts). For example, a soil with
LL = 40 and PI = 10 (point A in Figure 1.6) is classified as silt with medium
compressibility, whereas a soil with LL = 40 and PI = 20 (point B in Figure 1.6)
can be classified as clay of medium plasticity.

To determine the state of a natural soil with an in situ moisture content ω, we
can use the liquidity index (LI), defined as

LI = ω − PL

LL − PL
(1.23)
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For heavily overconsolidated clays, ω < PL and therefore LI < 0, and the soil is
classified as nonplastic (i.e., brittle); if 0 ≤ LI ≤ 1 (i.e., PL < ω < LL), the soil is
in its plastic state; and if LI > 1 (i.e., ω > LL), the soil is in its liquid state.

Another useful indicator is the activity A of a soil (Skempton, 1953):

A = PI

% clay fraction (< 2 µ m)
(1.24)

In this equation the clay fraction (clay content) is defined as the weight of the clay
particles (< 2 µm) in a soil. The activity is a measure of the degree of plasticity
of the clay content of the soil. Typical activity values for the main clay minerals
are: kaolinite, A = 0.3 to 0.5; illite, A = 0.5 to 1.2; and montmorillonite, A = 1.5
to 7.0.

1.6 CLASSIFICATION SYSTEMS

The two most widely used classification systems are the American Association
of State Highway and Transportation Officials (AASHTO) and the Unified Soil
Classification System (USCS). Our discussion here will involve only the USCS
system.

The Unified Soil Classification System (ASTM 2004: Designation D-2487) clas-
sifies soils based on their grain-size distribution curves and their Atterberg limits.
As shown in Table 1.2, a soil is called coarse-grained if it has less than 50% pass-
ing sieve No. 200. Soils in this group can be sandy soils (S) or gravelly soils (G). It
follows that a soil is called fine-grained if it has more than 50% passing sieve No.
200. Soils in this group include inorganic silts (M), inorganic clays (C), or organic
silts and clays (O). The system uses the symbol W for well-graded soils, P for
poorly graded soils, L for low-plasticity soils, and H for high-plasticity soils. The
combined symbol GW, for example, means well-graded gravel, SP means poorly
graded sand, and so on. Again, to determine the exact designation of a soil using
the Unified Soil Classification System, you will need to have the grain-size distri-
bution curve and the Atterberg limits of that soil. Then you can use Table 1.2 to
get the soil symbol.

Example 1.2 Using the Unified Soil Classification System, classify a soil that has
95% passing a No. 10 sieve; 65% passing No. 40; and 30% passing No. 200. The
soil has a liquid limit of 25 and a plastic limit of 15.

SOLUTION: The soil has 30% passing a No. 200 sieve, therefore, it is a coarse-
grained soil according to the first column in Table 1.2. The soil has 95% passing
a No. 10 sieve, so it must have at least 95% passing a No. 4 sieve (No. 4 has a
larger opening size than No. 10). This means that the soil has less than 5% gravel
(see Figure 1.7). According to the second column in Table 1.2, the soil is classified
as sand. But since it has 30% fines, it is a sandy soil with fines according to the
third column in Table 1.2.



TABLE 1.2 Unified Soil Classification System (adapted from Das 2004)

Criteria Symbol
Coarse-grained soils: less

than 50% passing No.
200 sieve

Gravel: more than 50%
of coarse fraction
retained on No. 4 sieve

Clean gravels: less than
5% fines

Cu ≥ 4 and 1 ≤ Cc ≤ 3 GW

Cu < 4 and/or 1 > Cc > 3 GP
Gravels with fines: more

than 12% fines
PI < 4 or plots below A line (Fig. 1.6) GM

PI > 7 and plots on or above A line
(Fig. 1.6)

GC

Sands: 50% or more of
coarse fraction passes
No. 4 sieve

Clean sands: less than 5%
fines

Cu ≥ 6 and 1 ≤ Cc ≤ 3 SW

Cu < 6 and/or 1 > Cc > 3 SP
Sands with fines:
more than 12% fines

PI < 4 or plots below A line (Fig. 1.6) SM

PI > 7 and plots on or above A line
(Fig. 1.6)

SC

Fine-grained soils: 50%
or more passing No.
200 sieve

Silts and clays: LL < 50 Inorganic PI > 7 and plots on or above A line
(Fig. 1.6)

CL

PI < 4 or plots below A line (Fig. 1.6) ML

Organic
LL(oven dried)

LL(not dried)
< 0.75 OL

Silts and clays: LL ≥ 50 Inorganic PI plots on or above A line (Fig. 1.6) CH
PI plots below A line (Fig. 1.6) MH

Organic
LL(oven dried)

LL(not dried)
< 0.75 OH

Highly organic soils Primarily organic matter, dark in color, and organic odor Pt15



16 PROPERTIES OF SOIL

No. 4

No. 200

Pan

No. 170

No. 120

No. 80

No. 40

No. 10

Gravel

Sand

Silt and Clay

Sand

Sand

Sand

Sand

Sand

Sieve

30%

95%
passing
No. 10

Less than 5%
retained on
No. 4

FIGURE 1.7 Particle-size distribution for Example 1.2.

The plasticity index of the soil is PI = LL − PL = 25 − 15 = 10 > 7. Also, the
point with LL = 25 and PI = 10 plots above the A line in Figure 1.6. Therefore,
the soil is classified as SC = clayey sand according to the fourth and fifth columns
in Table 1.2.

1.7 COMPACTION

Compaction involves applying mechanical energy to partially saturated soils for
densification purposes. The densification process brings soil particles closer to each
other, thus decreasing the size of the voids by replacing air pockets with soil
solids. Theoretically, we can achieve 100% saturation by replacing all air pockets
by soil solids if we apply enough mechanical energy (compaction), but that is
practically impossible. With proper compaction, the soil becomes stronger (higher
shear strength), less compressible when subjected to external loads (i.e., less future
settlement), and less permeable, making the soil a good construction material for
highway embankments, ramps, earth dams, dikes, backfill for retaining walls and
bridge abutments, and many other applications.

Soils are compacted in layers (called lifts) with each layer being compacted
to develop a final elevation and/or shape. Compaction machines such as smooth
rollers, pneumatic rollers, and sheepsfoot rollers are generally used for this purpose.
The compaction energy generated by a compactor is proportional to the pressure
applied by the compactor, its speed of rolling, and the number of times it is rolled
(number of passes). Usually, a few passes are needed to achieve the proper dry unit
weight, provided that the proper moisture content is used for a particular soil. The
required field dry density is 90 to 95% of the maximum dry density that can be
achieved in a laboratory compaction test (standard proctor test or modified proctor
test: ASTM 2004: Designation D-698 and D-1557) carried out on the same soil.
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The standard proctor test is a laboratory test used to determine the maximum
dry unit weight and the corresponding optimum moisture content for a given com-
paction energy and a given soil. The soil specimen is obtained from the borrow
site, which is usually an earthcut that is close to the construction site. The soil is
first dried and crushed and then mixed with a small amount of water in a uniform
manner. The resulting moisture content should be well below the natural moisture
content of the soil. The Proctor test involves placing the moist soil in three equal
layers inside an extended mold (removable extension). The inside volume of the
mold (without the extension) is exactly 1000 cm3. Each soil layer is compacted
using 25 blows from a 2.5-kg hammer. Each blow is applied by raising the ham-
mer 305 mm and releasing it (free fall). The 25 blows are distributed uniformly to
cover the entire surface of each layer. After compacting the third layer, the mold
extension is removed and the soil is carefully leveled and weighed. Knowing the
weight W of the moist soil and its volume V , we can calculate the unit weight as
γ = W/V . A small sample is taken from the compacted soil and dried to measure
the moisture content ω. Now we can calculate the dry unit weight of the compacted
soil as γd = γ/(1 + ω). Once this is done, the soil sample is crushed and added
to the remainder of the soil in the mixing pan. The moisture content of the soil is
increased (1 to 2%) by adding more water. The test is repeated in the same manner
as described above. We need to repeat the test at least four to five times to establish
a compaction curve such as the one shown in Figure 1.8.

The compaction curve shown in Figure 1.8 provides the relationship between
the dry unit weight and the moisture content for a given soil subjected to a specific
compaction effort. It is noted from the figure that the dry unit weight increases
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FIGURE 1.8 Compaction curve.



18 PROPERTIES OF SOIL

as the moisture content increases until the maximum dry unit weight is reached.
The moisture content associated with the maximum dry unit weight is called the
optimum water content. As shown in the figure, when the moisture content is
increased beyond the optimum water content, the dry unit weight decreases. This
is caused by the water that is now occupying many of the voids and making it
more difficult for the soil to compact further. Note that the degree of saturation
corresponding to the optimum moisture content is 75 to 80% for most soils (i.e.,
75 to 80% of the voids are filled with water).

The compaction curve provides valuable information: the maximum dry unit
weight and the optimum water content that can be conveyed to the compaction
contractor by specifying the required relative compaction, RC, defined as

RC = γd−field

γd−max
× 100% (1.25)

in which γd−field is the required dry unit weight of the compacted soil and γd−max

is the maximum dry unit weight obtained from the laboratory compaction test.
Usually, the required relative compaction is 90 to 95%. This is because it is very
difficult (and costly) to achieve a field dry unit weight that is equal to the maximum
dry unit weight obtained from the laboratory compaction test.

It is not enough to specify the relative compaction RC alone. We need to specify
the corresponding moisture content that must be used in the field to achieve a
specific RC. This is due to the nature of the bell-shaped compaction curve that
can have two different moisture contents for the same dry unit weight. Figure 1.8
shows that we can use either ω = 13.75% or ω = 17.3% to achieve a dry unit
weight γd−field = 18.5 kN/m3, which corresponds to RC = 95%.

In general, granular soils can be compacted in thicker layers than silt and clay.
Granular soils are usually compacted using kneading, tamping, or vibratory com-
paction techniques. Cohesive soils usually need kneading, tamping, or impact. It is
to be noted that soils vary in their compaction characteristics. Soils such as GW,
GP, GM, GC, SW, SP, and SM (the Unified Soil Classification System, Table 1.2)
have good compaction characteristics. Other soils, such as SC, CL, and ML, are
characterized as good to poor. Cohesive soils with high plasticity or organic con-
tents are characterized as fair to poor. At any rate, the quality of field compaction
needs to be assured by measuring the in situ dry unit weight of the compacted soil
at random locations. Several test methods can be used for this purpose:

1. The sand cone method (ASTM 2004: Designation D-1556) requires that a
small hole be excavated in a newly compacted soil layer. The soil removed is
weighed (W ) and its moisture content (ω) is determined. The volume (V ) of
the hole is determined by filling it with Ottawa sand that has a known unit
weight. The field dry unit weight can be calculated as γd−field = γ/(1 + ω),
in which γ is calculated as γ = W/V .

2. There is a method similar to the sand cone method that determines the volume
of the hole by filling it with oil (instead of sand) after sealing the surface
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of the hole with a thin rubber membrane. This method is called the rubber
balloon method (ASTM 2004: Designation D-2167).

3. The nuclear density method uses a low-level radioactive source that is inserted,
via a probe, into the center of a newly compacted soil layer. The source emits
rays through the compacted soil that are captured by a sensor at the bottom
surface of the nuclear density device. The intensity of the captured radioac-
tivity is inversely proportional to soil density. The apparatus is calibrated
using the sand cone method for various soils, and it usually provides reliable
estimates of moisture content and dry unit weight. The method provides fast
results, allowing the user to perform a large number of tests in a short time.

PROBLEMS

1.1 Refer to Figure 1.3. For soil B: (a) determine the percent finer than sieves
No. 4, 10, 100, and 200; (b) determine d10, d30, and d60; (c) calculate the
uniformity coefficient; and (d) calculate the coefficient of gradation.

1.2 Refer to the phase diagram shown in Figure 1.9. In this phase diagram it
is assumed that the total volume of the soil specimen is 1 unit. Show that
(a) γd = Gsγw(1 − n), and (b) γ = Gsγw(1 − n)(1 + ω).

Solids

Air

Vs

Vv
Ww

Ws

0

W V = 1

Water

FIGURE 1.9

1.3 For a moist soil specimen, the following are given: V = 0.5 m3, W = 9.5 kN,
ω = 7.3%, and Gs = 2.7. Determine the bulk unit weight γ, the dry unit
weight γd , the void ratio e, the porosity n, and the degree of saturation S.

1.4 The field unit weight of a compacted soil is γ = 17.5 kN/m3, and its mois-
ture content is ω = 7%. Calculate the relative density of the compacted soil
knowing that its emax = 0.9, emin = 0.5, and Gs = 2.7.

1.5 A moist soil has Gs = 2.65, γ = 20 kN/m3, and ω = 15.2%. Calculate its dry
unit weight γd , void ratio e, porosity n, and degree of saturation S.
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1.6 A 1.3-m3 soil specimen weighs 25.7 kN and has a moisture content of 11%.
The specific gravity of the soil solids is 2.7. Using the fundamental equations,
(1.1) to (1.10), calculate its bulk unit weight γ, dry unit weight γd , void ratio
e, porosity n, volume of water Vw , and degree of saturation S.

1.7 Four standard Proctor tests were performed on a clayey soil with the following
results:

Bulk unit weight (kN/m3) Moisture content (%)
20.6 13.3
21.96 14.4
22.5 16
21.7 18.5

Plot the compaction curve and obtain the maximum dry unit weight and the
corresponding optimum moisture content.

1.8 The same soil as that in Figure 1.8 is used to construct an embankment. It
was compacted using a moisture content below the optimum moisture content
and a relative compaction of 95%. What is the compacted unit weight of the
soil in the field? If the specific gravity of the soil solids is 2.68, what are the
soil’s in situ porosity and degree of saturation?



CHAPTER 2

ELASTICITY AND PLASTICITY

2.1 INTRODUCTION

Predicting soil behavior by constitutive equations that are based on experimental
findings and embodied in numerical methods such as the finite element method
is a significant aspect of soil mechanics. This allows engineers to solve various
types of geotechnical engineering problems, especially problems that are inherently
complex and cannot be solved using traditional analysis without making simplifying
assumptions that may jeopardize the value of the analytical solution.

Soils are constituted of discrete particles, and most soil models assume that
the forces and displacements within these particles are represented by continuous
stresses and strains. It is not the intention of most soil models to predict the behavior
of the soil mass based on the behavior of soil particles and the interaction among
particles due to a given loading regime. Rather, these stress–strain constitutive
laws are generally fitted to experimental measurements performed on specimens
that include a large number of particles.

In this chapter we present three elastoplastic soil models. These models must
be calibrated with the results of laboratory tests performed on representative soil
samples. Usually, a minimum of three conventional triaxial compression tests and
one isotropic consolidation (compression) test are needed for any of the three
models. Undisturbed soil specimens are obtained from the field and tested with
the assumption that they represent the average soil behavior at the location from
which they were obtained. The triaxial tests should be performed under conditions
that are similar to the in situ conditions. This includes soil density, the range of
stresses, and the drainage conditions in the field (drained loading versus undrained
loading conditions). Also, the laboratory tests should include unloading–reloading
cycles to characterize the elastic parameters of the soil.
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Before presenting the plasticity models we discuss briefly some aspects of the
elasticity theory. The theory of elasticity is used to calculate the elastic strains
that occur prior to yielding in an elastoplastic material. First we present the stress
matrix, then present the generalized Hooke’s law for a three-dimensional stress
condition, a uniaxial stress condition, a plane strain condition, and a plane stress
condition.

2.2 STRESS MATRIX

The stress state at a point A within a soil mass can be represented by an infinitesimal
(very small) cube with three stress components on each of its six sides (one normal
and two shear components), as shown in Figure 2.1. Since point A is under static
equilibrium (assuming the absence of body forces such as the self-weight), only
nine stress components from three planes are needed to describe the stress state at
point A. These nine stress components can be organized into the stress matrix :


σ11 τ12 τ13

τ21 σ22 τ23

τ31 τ32 σ33


 (2.1)

where σ11, σ22, and σ33 are the normal stresses (located on the diagonal of the
stress matrix) and τ12, τ21, τ13, τ31, τ23, and τ32 are the shear stresses. The shear
stresses across the diagonal are identical (i.e., τ12 = τ21, τ13 = τ31 and τ23 = τ32)

as a result of static equilibrium (to satisfy moment equilibrium). This arrangement
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FIGURE 2.1 Stresses in three-dimensional space.
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of the nine stress components is also known as the stress tensor. The subscripts
1, 2, and 3 are used here instead of the subscripts x, y, and z, respectively (see
Figure 2.1).

The subscripts used for the nine stress components σαβ and ταβ have the follow-
ing meaning: α is the direction of the surface normal upon which the stress acts, and
β is the direction of the stress component. For example, the shear stress component
τ13 in Figure 2.1 is acting on a plane whose normal is parallel to the x-axis (1 ≡ x),
and the shear stress component itself is parallel to the z-axis (3 ≡ z).

2.3 ELASTICITY

In the following we present the three-dimensional generalized Hooke’s law suited
for isotropic linear elastic materials in three-dimensional stress conditions. The
generalized Hooke’s law will be applied to the uniaxial stress condition (one-
dimensional), the plane strain condition (two-dimensional), and the plane stress
condition (also two-dimensional). Hooke’s law is not appropriate for soils because
soils are neither linear elastic nor isotropic. Nevertheless, sometimes we idealize
soils as being linear elastic and isotropic materials—only then can we use Hooke’s
law to estimate the elastic strains associated with applied stresses within a soil mass.

2.3.1 Three-Dimensional Stress Condition

The simplest form of linear elasticity is the isotropic case. Being isotropic means
that the elastic moduli, such as E and ν, are orientation independent. This means,
for example, that E11, E22, and E33 are identical and they are all equal to E

(Young’s modulus). The stress–strain relationship of the linear elastic isotropic
case is given by




σ11

σ22

σ33

τ12

τ13

τ23




= E

(1 + ν)(1 − 2ν)




1 − ν ν ν 0 0 0

ν 1 − ν ν 0 0 0

ν ν 1 − ν 0 0 0

0 0 0 1 − 2ν 0 0

0 0 0 0 1 − 2ν 0

0 0 0 0 0 1 − 2ν




×




ε11

ε22

ε33

ε12

ε13

ε23




(2.2)
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The elastic properties are defined completely by Young’s modulus, E, and Poisson’s
ratio, ν. Equation (2.2) is also known as the generalized Hooke’s law. Recall that
Hooke’s law for the one-dimensional (uniaxial) stress condition is σ = Eε. This
equation has the same general form as (2.2). It will be shown below that (2.2)
reduces to σ = Eε for the uniaxial stress condition.

Equation (2.2) can be inverted to yield




ε11

ε22

ε33

ε12

ε13

ε23




=




1/E −ν/E −ν/E 0 0 0

−ν/E 1/E −ν/E 0 0 0

−ν/E −ν/E 1/E 0 0 0

0 0 0 1/2G 0 0

0 0 0 0 1/2G 0

0 0 0 0 0 1/2G







σ11

σ22

σ33

τ12

τ13

τ23



(2.3)

In this equation, the shear modulus, G, can be expressed in terms of E and ν as
G = E/2(1 + ν).

2.3.2 Uniaxial Stress Condition

The stress condition resulting from an axial stress σ11 (tension) applied to a steel
rebar can be thought of as a uniaxial stress condition (Figure 2.2). In a uniaxial stress
condition we have σ22 = σ33 = τ12 = τ13 = τ23 = 0, and σ11 �= 0. Substituting into
(2.3), we get

σ
22  = σ

33  = τ
12  = τ

13  = τ
23  = 0

x

y

z

σ11

FIGURE 2.2 Uniaxial stress condition.
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ε11

ε22

ε33

ε12

ε13

ε23




=




1/E −ν/E −ν/E 0 0 0

−ν/E 1/E −ν/E 0 0 0

−ν/E −ν/E 1/E 0 0 0

0 0 0 1/2G 0 0

0 0 0 0 1/2G 0

0 0 0 0 0 1/2G







σ11

0

0

0

0

0




This reduces to two equations:

ε11 = 1

E
σ11 (2.4)

and

ε22 = ε33 = −ν

E
σ11 (2.5)

substituting (2.4) into (2.5) yields

ε22 = ε33 = −ν

E
σ11 = −ν

ε11

σ11
σ11 = −νε11

or

ν = −ε33

ε11
→ ε33 = −νε11

This equation indicates that as the axial stress causes the steel rebar to extend
in the axial direction, the rebar becomes slimmer (negative ε33), due to Poisson’s
effect.

2.3.3 Plane Strain Condition

The plane strain assumption is frequently used in geotechnical analysis of soil
structures that are very long in one dimension while having a uniform cross
section with finite dimensions. Figure 2.3 illustrates a soil embankment that is
long in the z-direction while having a uniform cross section with finite dimen-
sions in the x–y plane. In this case we can assume a plane strain condition
in which the strains along the z-axis are assumed to be nil (i.e., ε33 = ε13 =
ε23 =0). The seemingly three-dimensional embankment problem reduces to a two-
dimensional plane problem in which the cross section of the embankment, in the
x–y plane, is assumed to represent the entire embankment. Now, let us substitute
ε33 = ε13 = ε23 = 0 into (2.2):
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x

y
z

x

y

ε33 = ε13 = ε23 = 0

ε33 = ε13 = ε23 = 0

FIGURE 2.3 Plane strain condition.




σ11

σ22

σ33

τ12

τ13

τ23




= E

(1 + ν)(1 − 2ν)




1 − ν ν ν 0 0 0

ν 1 − ν ν 0 0 0

ν ν 1 − ν 0 0 0

0 0 0 1 − 2ν 0 0

0 0 0 0 1 − 2ν 0

0 0 0 0 0 1 − 2ν




×




ε11

ε22

0

ε12

0

0




or


σ11

σ22

τ12


 = E

(1 + ν)(1 − 2ν)




1 − ν ν 0

ν 1 − ν 0

0 0 1 − 2ν






ε11

ε22

ε12


 (2.6)

Inverting (2.6), we get


ε11

ε22

ε12


 = 1 + ν

E




1 − ν ν 0

ν 1 − ν 0

0 0 1






σ11

σ22

τ12


 (2.7)
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σ33 = τ13 = τ23 = 0

x

y

z

FIGURE 2.4 Plane stress condition.

2.3.4 Plane Stress Condition

In the plane stress condition the stresses in the z-direction are assumed negligible
(i.e., σ33 = τ13 = τ23 = 0; see Figure 2.4). Substituting these stresses into (2.3),
we have




ε11

ε22

ε33

ε12

ε13

ε23




=




1/E −ν/E −ν/E 0 0 0

−ν/E 1/E −ν/E 0 0 0

−ν/E −ν/E 1/E 0 0 0

0 0 0 1/2G 0 0

0 0 0 0 1/2G 0

0 0 0 0 0 1/2G







σ11

σ22

0

τ12

0

0



(2.8)

Therefore,




ε11

ε22

ε12


 = 1

E




1 −ν 0

−ν 1 0

0 0 1 + ν






σ11

σ22

τ12


 (2.9)
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Inverting (2.9), we get




σ11

σ22

τ12


 = E

1 − ν2




1 ν 0

ν 1 0

0 0 1 − ν






ε11

ε22

ε12


 (2.10)

2.4 PLASTICITY

When an elastic material is subjected to load, it sustains elastic strains. Elastic
strains are reversible in the sense that the elastic material will spring back to its
undeformed condition if the load is removed. On the other hand, if a plastic material
is subjected to a load, it sustains elastic and plastic strains. If the load is removed,
the material will sustain permanent plastic (irreversible) strains, whereas the elastic
strains are recovered. Hooke’s law, which is based on elasticity theory, is sufficient
(in most cases) to estimate the elastic strains. To estimate the plastic strains, one
needs to use plasticity theory.

Plasticity theory was originally developed to predict the behavior of metals sub-
jected to loads exceeding their elastic limits. Similar models were developed later
to calculate the irreversible strains in concrete, soils, and polymers. In this chapter
we present three plasticity models for soils that are frequently used in geotech-
nical engineering applications. It is customary in plasticity theory to decompose
strains into elastic and plastic parts. A plasticity model includes (1) a yield cri-
terion that predicts whether the material should respond elastically or plastically
due to a loading increment, (2) a strain hardening rule that controls the shape of
the stress–strain response during plastic straining, and (3) a plastic flow rule that
determines the direction of the plastic strain increment caused by a stress increment.

2.5 MODIFIED CAM CLAY MODEL

Researchers at Cambridge University formulated the first critical-state models for
describing the behavior of soft soils: the Cam clay and modified Cam clay models
(Roscoe and Burland, 1968; Schofield and Wroth, 1968). Both models are capa-
ble of describing the stress–strain behavior of soils; in particular, the models can
predict the pressure-dependent soil strength and the compression and dilatancy (vol-
ume change) caused by shearing. Because the models are based on critical-state
theory, they both predict unlimited soil deformations without changes in stress or
volume when the critical state is reached. The following description is limited to
the modified Cam clay model.

Soil is composed of solids, liquids, and gases. The Cam clay model assumes that
the voids between the solid particles are filled only with water (i.e., the soil is fully
saturated). When the soil is loaded, significant irreversible (plastic) volume changes
occur, due to the water that is expelled from the voids. Realistic prediction of these
deformations is crucial for many geotechnical engineering problems. Formulations
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of the modified Cam clay model are based on plasticity theory, through which it
is possible to predict realistically volume changes due to various types of loading.

In critical-state theory, the state of a soil specimen is characterized by three
parameters: mean effective stress p′, deviator stress (shear stress) q, and void ratio,
e. The mean effective stress can be calculated in terms of the principal effective
stresses σ′

1, σ′
2, and σ′

3 as

p′ = σ′
1 + σ′

2 + σ′
3

3
(2.11)

and the shear stress is defined as

q = 1√
2

√
(σ′

1 − σ′
2)

2 + (σ′
2 − σ′

3)
2 + (σ′

1 − σ′
3)

2 (2.12)

For the consolidation stage of a consolidated–drained triaxial compression test, we
have σ′

1 = σ′
2 = σ′

3, where σ′
3 is the confining pressure; therefore,

p′ = σ′
1 + σ′

2 + σ′
3

3
= 3σ′

3

3
= σ′

3 (2.13)

and

q = 1√
2

√
(σ′

1 − σ′
2)

2 + (σ′
2 − σ′

3)
2 + (σ′

1 − σ′
3)

2 = 0 (2.14)

For the shearing stage of a triaxial compression test we have σ′
1 �= σ′

2 = σ′
3; there-

fore,

p′ = σ′
1 + σ′

2 + σ′
3

3
= σ′

1 + 2σ′
3

3
(2.15)

and

q = 1√
2

√
(σ′

1 − σ′
2)

2 + (σ′
2 − σ′

3)
2 + (σ′

1 − σ′
3)

2 = 1√
2

√
2(σ′

1 − σ′
3)

2 = σ′
1 − σ′

3

(2.16)
Note that in a triaxial stress condition the shear stress q = σ′

1 − σ′
3 is termed the

deviator stress, �σd(= σ′
1 − σ′

3).
The effective stress path of a triaxial test represents the locus of the effective

stress state in the p′–q plane. The effective stress path can be calculated easily
from the results of a triaxial test using (2.15) and (2.16). For a consolidated–drained
triaxial test, the effective stress path is a straight line whose slope is defined as

slope = �q

�p′

Noting that σ′
3 is constant and using (2.16) we have

�q = �σ′
1 − �σ′

3 = �σ′
1 − 0 = �σ′

1
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From (2.15) we have

�p′ = �σ′
1 + 2�σ′

3

3
= �σ′

1 + 0

3
= �σ′

1

3

Therefore,

slope = �σ′
1

�σ′
1/3

= 3

2.5.1 Normal Consolidation Line and Unloading–Reloading Lines

The consolidation characteristics of a soil can be measured in the laboratory
using a one-dimensional consolidation test or isotropic consolidation test. A one-
dimensional consolidation test involves a cylindrical soil specimen confined in a
rigid ring and subjected to normal pressure (Chapter 4). The normal pressure is
increased in stages, each ending when the excess pore water pressure generated by
the pressure increment has ceased. The results of a one-dimensional consolidation
test are usually presented in the e–log σ′

v plane as shown in Figure 2.5a, where e

is the void ratio and σ′
v is the vertical effective stress.

In reference to Figure 2.5a, let us define a preconsolidation pressure, σ′
c, as

the maximum past pressure exerted on the clay specimen. A normally consoli-
dated (NC) clay is defined as a clay that has a present (in situ) vertical effective
stress σ′

0 equal to its preconsolidation pressure σ′
c. An overconsolidated (OC)

clay is defined as a clay that has a present vertical effective stress less than its
preconsolidation pressure. Finally, define an overconsolidation ratio (OCR) as

e0

σ'0

log σ'v

σ'c

1

e e

1

p'0 p'c

log p'

Cs 1

Cs 1

Cc

1

(a) (b)

N
orm
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onsolidation L
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N
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Unloading–
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Unloading–
Reloading
Line

Cs

Cc

FIGURE 2.5 Idealized consolidation curves: (a) one-dimensional consolidation;
(b) isotropic consolidation (compression).
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the ratio of the preconsolidation pressure to the present vertical effective stress
(OCR = σ′

c/σ
′
0). Imagine a clay layer that was subjected to a constant pressure

of 100 kPa caused by a thick layer of sand. Then the sand layer is removed and
the pressure exerted is totally gone. In this case the preconsolidation pressure is
σ′

c = 100 kPa—it is the maximum past pressure exerted. Let us assume that the
present vertical effective stress in the middle of the clay layer is σ′

0 = 50 kPa. The
present vertical effective stress, 50 kPa, is less than the preconsolidation pressure,
100 kPa. Therefore, the clay is overconsolidated. The overconsolidation ratio of
this clay is OCR = σ′

c/σ′
0 = 100 kPa/50 kPa = 2.

The preconsolidation pressure is a soil parameter that can be obtained from
the e–log σ′

v curve deduced from the results of a one-dimensional consolidation
test (Figure 2.5a). The preconsolidation pressure is located near the point where
the e–log σ′

v curve changes in slope. Other consolidation parameters, such as the
compression index (Cc) and the swelling index (Cs), are also obtained from an
e–log σ′

v curve. The compression index is the slope of the loading portion in the
e–log σ′

v plane, and the swelling index is the slope of the unloading portion, as
indicated in the figure.

An isotropic consolidation (compression) test can also be performed to obtain
the consolidation characteristics of soils. The test consists of a cylindrical soil spec-
imen subjected to an all-around confining pressure during which the specimen is
allowed to consolidate. The confining pressure is increased in increments, each of
which ends when the excess pore water pressure generated by the stress increment
has ceased. The void ratio versus mean effective stress relationship in a semilog-
arithmic plane (e–log p′) is obtained from the changes in volume at the end of
each loading stage of the isotropic consolidation test. The mean effective stress in
an isotropic consolidation test is p′ = (σ′

1 + σ′
2 + σ′

3)/3 = (σ′
3 + σ′

3 + σ′
3)/3 = σ′

3,
where σ′

3 is the confining pressure. An example of an e–log p′ curve is shown in
Figure 2.5b.

In the derivation of the modified Cam clay model it is assumed that when a
soil sample is consolidated under isotropic stress conditions (p′ = σ′

1 = σ′
2 = σ′

3),
the relationship between its void ratio (e) and ln p′ (natural logarithm of p′) is a
straight line. This line is the normal consolidation line shown in Figure 2.6. Also,
there exists a set of straight unloading–reloading (swelling) lines that describe the
unloading–reloading behavior of the soft soil in the e–ln p′ plane, as shown in
the figure. Note that λ is the slope of the normal consolidation line in the e–ln p′
plane and κ is the slope of the unloading–reloading line in the same plane.

Consider a soil specimen that is subjected initially to a mean effective stress
p′

A = 1 kPa and has a void ratio eA = eN = 0.92 in an isotropic consolidation test
(Figure 2.6). This condition is represented by point A in the figure. In the modified
Cam clay model, when the mean effective stress is increased to p′ = 30 kPa, for
example, the stress condition in the e–ln p′ plane will move down the normal
consolidation line from point A to point B. If the sample is unloaded back to
p′ = 1 kPa, point B will not move back to point A; instead, it will move up the
unloading–reloading line to point C, at which the soil has a smaller void ratio
eC = 0.86.
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FIGURE 2.6 Consolidation curve in the void ratio versus mean effective stress (natural
logarithm of p′) plane.

If the sample is then reloaded to a stress p′ = 150 kPa, point C will first move
down the unloading–reloading line to point B, at which p′ = 30 kPa. When p′ =
30 kPa is reached, the stress condition will change course and move down the
normal consolidation line to point D. If the sample is again unloaded to p′ = 1 kPa,
point D will move up the unloading–reloading line to point E, at which the soil
will have a void ratio eE = 0.84.

In the e–ln p′ plane (Figure 2.6), the normal consolidation line is defined by
the equation

e = eN − λ ln p′ (2.17)

The normal consolidation line exists in the e–p′ plane as shown in Figure 2.7;
therefore, its equation in the p′–q plane is q = 0.

In the e–ln p′ plane the equation for an unloading–reloading line has the form

e = eC − κ ln p′ (2.18)

and it has the form q = 0 in the p′–q plane.
The material parameters λ, κ, and eN are unique for a particular soil. λ is the

slope of the normal consolidation line and the critical-state line (which is described
below) in the e–ln p′ plane, κ is the slope of the unloading–reloading line in the
e–ln p′ plane, and eN is the void ratio on the normal consolidation line at unit
mean effective stress (point A in Figure 2.6). Thus, eN is dependent on the pressure
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FIGURE 2.7 State boundary surface of the Cam clay model.

units used in the e–ln p′ plot. Note that the unloading–reloading line BC is fully
defined by its slope κ and by the coordinates of either point B or point C.

Any point along the normal consolidation line represents the stress state of a
normally consolidated (NC) soil. Also, any point along an unloading–reloading line
represents an overconsolidated stress state. Take, for example, point C (Figure 2.6),
at which p′

C = 1 kPa and eC = 0.86. This point has an overconsolidated stress
state since the soil was previously subjected to a preconsolidation pressure of
p′

B = 30 kPa. In fact, the overconsolidation ratio at point C is OCR = p′
B /p′

C =
30 kPa/1 kPa = 30, which means that the soil at point C is heavily overconsolidated.

2.5.2 Critical-State Line

Applying an increasing shear stress on a soil sample in a triaxial test, for example,
will eventually lead to a state in which further shearing can occur without changes
in volume, as shown in Figure 2.8, known as the critical-state condition. The
critical-state line (CSL) (Figures 2.9 and 2.10) is a presentation of the critical
state condition. The critical-state line in e–p′–q space is shown in Figure 2.7.
To obtain the critical-state line we need to perform consolidated–drained (CD)
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FIGURE 2.9 Normal consolidation and critical-state lines in the e–ln p′ plane.

or consolidated–undrained (CU) triaxial compression tests on representative soil
specimens. From the test results we can obtain the critical-state friction angle of
the soil by drawing the effective-stress Mohr’s circles that represent a critical-
state stress condition, such as the one shown in Figure 2.8. Next, we draw the
effective-stress Mohr–Coulomb failure criterion, which is a straight line tangent to
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FIGURE 2.10 Yield surface of a Cam clay model in the q–p′ plane.

the effective-stress Mohr’s circles. The slope of this line is the critical-state friction
angle φ′. The slope of the critical-state line in the p′–q plane, M (Figure 2.10),
can be calculated as

M = 6 sin φ′

3 − sin φ′ (2.19)

In reference to Figure 2.10, the critical-state line has the following equation in the
p′–q plane:

qf = Mp′
f (2.20)

where p′
f is the mean effective stress at failure and qf is the shear stress at fail-

ure (i.e., the shear strength). Equation (2.20) is the failure criterion used in the
modified Cam clay model. This failure criterion bears the same meaning as the
Mohr–Coulomb failure criterion τf = c′ + σ′ tan φ′, where τf is the shear stress
at failure and σ′ is the effective normal stress. Equation (2.19) can be obtained by
comparing the effective-stress Mohr–Coulomb failure criterion with (2.20), where
c′ is assumed to be zero in the Mohr–Coulomb failure criterion (true for sands and
soft clays).

The critical-state line is parallel to the normal consolidation line in the e–ln p′
plane, as shown in Figure 2.9. The equation of the critical-state line in this plane
is given as

ef = e� − λ ln p′ (2.21)

where ef is the void ratio at failure and e� is the void ratio of the critical-state line
at p′ = 1 kPa (or any other unit). Note that the parameters eN and e� (Figure 2.9)
are related by the equation

e� = eN − (λ − κ) ln 2 (2.22)
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Because of (2.22), either eN or e� needs to be provided. The other parameter can
be calculated using (2.22).

2.5.3 Yield Function

In the p′–q plane, the modified Cam clay yield surface is an ellipse given by

q2

p′2 + M2
(

1 − p′
c

p′

)
= 0 (2.23)

Figure 2.10 shows an elliptical yield surface corresponding to a preconsolidation
pressure p′

c. The parameter p′
c controls the size of the yield surface and is different

for each unloading–reloading line. The parameter p′
c is used to define the hardening

behavior of soil. The soil behavior is elastic until the stress state of the soil specimen
(p′, q) hits the yield surface. Thereafter, the soil behaves in a plastic manner. Note
that the critical-state line intersects the yield surface at point A, located at the crown
of the ellipse (and thus has the maximum q). Also note that the p′-coordinate of
the intersection point (point A) is p′

c/2. Figure 2.7 presents the yield surface of
the modified Cam clay model in e–p′–q three-dimensional space, termed the state
boundary surface. Note that the size of the yield surface decreases as the void ratio
increases.

2.5.4 Hardening and Softening Behavior

Consider a soil specimen that is isotropically consolidated to a mean effective stress
p′

c and then is unloaded slightly to p′
0, as shown in Figure 2.11a. Here p′

c is the
preconsolidation pressure and p′

o is the present pressure. The size of the initial
yield surface is determined by p′

c, as shown in the figure. Note that the soil is
lightly overconsolidated such that OCR = p′

c/p′
o < 2.

Next, let us start shearing the soil specimen under drained conditions. The effec-
tive stress path of this consolidated–drained (CD) triaxial test is shown in the figure
as a straight line with a 3 : 1 slope (3 vertical to 1 horizontal). If the stress path
touches the initial yield surface to the right of the point at which the CSL inter-
sects the yield surface, hardening behavior, accompanied by compression, will
occur. This side of the yield surface is the wet side as indicated in Figure 2.11a.

During shearing, the soil specimen sustains only elastic strains within the ini-
tial yield surface. When the stress state of the soil touches the yield surface, the
specimen will sustain plastic strains as well as elastic strains. The yield surface
will expand (hardening), causing further plastic strains, until the stress state of the
specimen touches the critical state line at point F , where failure occurs; the soil
will continue to distort without changes in shear stress or volume. Figure 2.11b

shows the stress–strain hardening behavior for normally consolidated and lightly
overconsolidated clays.

Consider another soil specimen that is isotropically consolidated to a mean
effective stress p′

c and then unloaded to p′
0 such that the specimen is heavily
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FIGURE 2.11 Cam clay hardening behavior: (a) evolution of a yield surface during hard-
ening; (b) stress–strain curve with strain hardening.

overconsolidated (OCR > 2). Note that p′
c is the preconsolidation pressure and

p′
o is the present pressure. As shown in Figure 2.12a, the size of the initial yield

surface is governed by p′
c.

When shearing the soil specimen under drained conditions, the effective stress
path is a straight line making a 3 : 1 slope, as shown in Figure 2.12a. In the case
of heavily overconsolidated clay, the stress path traverses the initial yield surface,
to the left of the point at which the CSL intersects the yield surface, inducing
softening behavior accompanied by dilatancy (expansion). This side of the yield
surface is the dry side, as indicated in Figure 2.12a.

The heavily overconsolidated soil specimen sustains only elastic strains within
the initial yield surface. Note that the effective stress path traverses the critical-state
line before touching the initial yield surface and without causing failure in the soil
specimen elastic behavior. When the effective stress path touches the yield surface,
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FIGURE 2.12 Cam clay softening behavior: (a) evolution of a yield surface during soft-
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the yield surface will contract (softening), causing further plastic strains, until the
stress state of the specimen touches the critical-state line again at point F, where
failure occurs. Figure 2.12b shows the stress–strain softening behavior for heavily
overconsolidated clays.

2.5.5 Elastic Moduli for Soil

Assuming that the elastic response of soil is isotropic and elastic, we need to have
two elastic moduli to define its elastic stiffness completely. The elastic material
constants commonly used to relate stresses to strains are Young’s modulus E, shear
modulus G, Poisson’s ratio ν, and bulk modulus K . These moduli are related—if
you know two, you can calculate the other two. For example, if you know K and
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ν, you can calculate E and G using

E = 3K(1 − 2ν) (2.24)

and

G = 3K(1 − 2ν)

2(1 + ν)
(2.25)

respectively. The elastic behavior of soil is nonlinear and stress dependent. There-
fore, the elastic moduli need to be presented in incremental form.

For soils modeled using the modified Cam clay model, the bulk modulus K is
stress dependent (i.e., K is not a constant). The bulk modulus depends on the mean
effective stress p′, void ratio e0, and unloading–reloading line slope κ. The follow-
ing equation can be obtained easily from the equation of the unloading–reloading
line, (2.18), which describes the elastic behavior of soil:

K = (1 + e0)p
′

κ
(2.26)

Substituting (2.26) into (2.24) and (2.25), respectively, we can obtain

E = 3(1 − 2ν)(1 + e0)p
′

κ
(2.27)

and

G = 3(1 − 2ν)(1 + e0)p
′

2(1 + ν)κ
(2.28)

Note that E and G are also not constants. They are a function of the mean
effective stress p′, void ratio e0, unloading–reloading line slope κ, and Poisson’s
ratio ν. In (2.27) and (2.28) we can, for simplicity, assume a constant Poisson’s
ratio.

2.5.6 Summary of Modified Cam Clay Model Parameters

Overconsolidation Ratio The stress state of a soil can be described by its
current mean effective stress p′

0, void ratio e, and yield stress p′
c (preconsolidation

pressure). The ratio of preconsolidation pressure to current mean effective stress is
the overconsolidation ratio (OCR):

OCR = p′
c

p′
0

(2.29)

OCR = 1 indicates a normal consolidation state; a state in which the maximum
mean effective stress experienced previously by the soil is equal to the current
mean effective stress. OCR > 1 indicates an overconsolidated stress state where
the preconsolidation pressure is greater than the present mean effective pressure.
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Slope M of the Critical-State Line The slope M of the CSL in the p′–q

plane can be calculated from the internal friction angle φ′ obtained from triaxial
tests results at failure:

M = 6 sin φ′

3 − sin φ′

Alternatively, the at-failure stresses from triaxial tests results can be plotted in the
p′–q plane. The data points can be best fitted with a straight line whose slope is M .

λ and κ Slopes λ and κ of the normal consolidation and unloading–reloading
lines in the e–ln p′ plane are related to the compression index Cc and swelling
index Cs obtained from an isotropic consolidation test:

λ = Cc

ln 10
= Cc

2.3
and

κ = Cs

ln 10
= Cs

2.3

2.5.7 Incremental Plastic Strains

In their derivation of the modified Cam clay formulations, Roscoe and Burland
(1968) assumed that the work done on a soil specimen by a load q, p′, is given by

dW = p′ dεp
v + qdεp

s (2.30)

where dε
p
v is the plastic (irreversible) volumetric strain increment and dε

p
s is the

plastic shear strain increment (also irreversible). In a triaxial stress state, dε
p
v is

equal to dε
p

1 + 2dε
p

3 and dε
p
s is equal to 2

3 (dε
p

1 − dε
p

3 ). Also, p′ and q are given
by (2.15) and (2.16), respectively.

Roscoe and Burland (1968) derived an associated plastic flow rule given by

dε
p
v

dε
p
s

= M2 − η2

2η
(2.31)

where η = q/p′ is the stress ratio. Note that η is equal to M when q = qf and
p′ = p′

f (at failure). In the modified Cam clay model the plastic strain increment
resulting from a load increment dη = dq/dp′, shown in Figure 2.13a, is normal to
the yield surface as shown in Figure 2.13b. This is referred to as the normality rule.

Next, we present equations for strain increments caused by a stress increment,
dη = dq/dp′. These equations allow us to calculate the plastic volumetric strain
increment dε

p
v , the elastic volumetric strain increment dεe

v , the plastic shear strain
increment dε

p
s , and the elastic shear strain increment dεe

s . Note that the total volu-
metric strain increment is given as

dεv = dεe
v + dεp

v (2.32)
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FIGURE 2.13 Determination of a plastic strain increment: (a) load increment; (b) direction
of the plastic strain increment (normality rule).

and the total shear strain increment is given as

dεs = dεe
s + dεp

s (2.33)

For simplicity, the critical-state theory assumes that no recoverable energy is asso-
ciated with shear distortion (i.e., dεe

s = 0). Thus, (2.33) is reduced to dεs = dε
p
s .

It is important to note that the following equations are given in incremental forms
and thus need to be used in an incremental manner: The load must be applied in
small increments and the corresponding strain increments are calculated. The strain
increments are accumulated to give us the total strain.
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Desai and Siriwardane (1984) presented the following equations for volumetric
and shear strain increments:

Volumetric strains The plastic volumetric strain increment

dεp
v = λ − κ

1 + e

(
dp′

p′ + 2η dη

M2 + η2

)
(2.34)

The elastic volumetric strain increment

dεe
v = κ

1 + e

dp′

p′ (2.35)

Thus, the total volumetric strain increment:

dεv = λ

1 + e

[
dp′

p′ +
(

1 − κ

λ

) 2η dη

M2 + η2

]
(2.36)

Shear strains

dεs = dεp
s = λ − κ

1 + e

(
dp′

p′ + 2η dη

M2 + η2

)
2η

M2 − η2
(2.37)

or

dεs = dεp
s = dεp

v

2η

M2 − η2
(2.38)

2.5.8 Calculations of the Consolidated–Drained Stress–Strain
Behavior of a Normally Consolidated Clay Using the Modified Cam
Clay Model

Using (2.34) to (2.38), we can predict the stress–strain behavior of a normally con-
solidated (NC) clay. The stress is applied using a given stress path, and the corre-
sponding strains are calculated. The effective stress path in a consolidated–drained
triaxial test is a straight line making a slope of 3 in the p′–q plane, as described
earlier. Equations (2.34) to (2.38) are given in incremental form. Thus, incremental
strains caused by stress increments should be calculated. The increments are then
added together to calculate the total strains.

Figure 2.14a describes the behavior of a lightly overconsolidated soil specimen
in a CD test. Initially, the stress state of the specimen is located on the NCL, as
indicated by point 1 in Figure 2.14b. The specimen is subjected to an all-around
confining pressure (isotropic consolidation), bringing the state of stress to point 2,
which corresponds to the preconsolidation pressure p′

c, as shown in the figure. The
specimen is then unloaded to point 3, which corresponds to the present pressure
p′

0. Now we can start shearing the specimen in a drained condition by allowing
water to leave during shearing. This means that there will be volume changes in
the soil specimen. The effective stress path during drained shearing is a straight
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FIGURE 2.14 Consolidated drained triaxial test behavior of a lightly overconsolidated
clay.

line, with a slope = 3, emanating from point 3. Thus, the equation of the effective
stress path is given as

qf = 3(p′
f − p′

0) (2.39)

The soil specimen will encounter only elastic strains as long as the effective stress
state is within the elastic region (i.e., within the initial yield surface). When the
effective stress path touches point 4, the soil starts to yield. The effective stress
path will maintain its course toward the critical-state line, during which the yield
surface grows (strain hardening) until the effective stress path touches the critical-
state line at point 6, where failure occurs. Note now how point 1 travels along
the NCL to point 2 during isotropic consolidation. Upon unloading, point 2 moves
along the swelling line to point 3. When shearing starts, point 3 moves along the
same swelling line to point 4. From point 3 to point 4, the soil specimen encounters
only elastic strains. As shearing continues beyond the elastic zone, plastic strains
ensue and the yield surface grows. During that time, point 4 travels to point 5,
located on another swelling line, which corresponds to the new yield surface that
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passes through point 5. Further loading will cause the yield surface to expand, and
point 5 moves to point 6, located on the critical-state line.

The following step-by-step procedure, adopted from Desai and Siriwardane
(1984), can be programmed in a spreadsheet to calculate the stress–strain behavior.
A similar procedure, used by Budhu (2007), can be used for lightly overconsoli-
dated soils.

2.5.9 Step-by-Step Calculation Procedure for a CD Triaxial Test on
NC Clays

Step 1: Choose a stress path for a specific loading condition. For a normally
consolidated clay in a consolidated–drained triaxial test, the effective stress
path (ESP) has a slope of 3 in the p′–q plane. The stress path starts from
p′ = p′

0 = σ′
3. Let us apply a small mean effective stress increment �p′. Next,

let us vary p′ from p′
0 to p′

f as follows: p′ = p′
0, p′

0 + �p′, p′
0 + 2�p′,

p′
0 + 3�p′, . . . , p′

f , where p′
f is the mean effective stress at failure. The spread-

sheet shown in Table 2.1 is used to predict the consolidated–drained triaxial
behavior of a normally consolidated clay specimen subjected to a confining pres-
sure σ′

3 = 206.7 kPa. Column (1) in the spreadsheet is reserved for the variation
of the effective mean stress. p′

0 = 206.7 kPa and �p′ = 7.2 kPa are used.
Since �q = 3�p′ in the effective stress path of a CD triaxial test, q should
vary as follows: q = 0, 3�p′, 6�p′, 9�p′, . . . , qf , where qf is the shear stress
at failure (= Mp′

f ). This is shown in column (2).
The mean effective stress at failure p′

f and the shear stress at failure qf can
be calculated easily if we realize that they are at the point where the effective
stress path intersects the critical-state line (Figure 2.14a). The equation of the
critical-state line is qf = Mp′

f , and the equation of the effective stress path is
qf = 3(p′

f − p′
0). Solving these two equations simultaneously, we get

p′
f = 3p′

0

3 − M
and qf = 3Mp′

0

3 − M

In the present example, use M = 1.

Step 2: Calculate the stress ratio η = q/p′ for each row [column (3)].

Step 3: Calculate the increment of stress ratio dη = ηi − ηi−1, where i is the
current row and i − 1 is the preceding row [column (4)].

Step 4: Calculate the total volumetric strain increment using (2.36):

dεv = λ

1 + e

[
dp′

p′ +
(

1 − κ

λ

) 2η dη

M2 + η2

]
column (5)

In the present example, use κ = 0.026, λ = 0.174, and e0 = 0.889.

Step 5: Calculate the total volumetric strain, (εv)k = ∑i=k
i=1 (dεv)i , where k is the

current row. This is done in column (6).
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Step 6: Calculate the change of void ratio: de = (1 + e)dεv [column (7)], where e

is the void ratio at the beginning of the current increment taken from column (8).
For the first row, use e = e0. In the example spreadsheet we used e0 = 0.889.
In column (8), calculate the updated void ratio ei = ei−1 − de, where i is the
current row and i − 1 is the preceding row.

Step 7: Calculate the total shear strain increment using (2.37):

dεs = dεp
s = λ − κ

1 + e

(
dp′

p′ + 2η dη

M2 + η2

)(
2η

M2 − η2

)
column (9)

Step 8: Calculate the total shear strain: (εs)k = ∑i=k
i=1 (dεs)i , where k is the current

row. This is done in column (10).

Step 9: Calculate the total axial strain: ε1 = εv/3 + εs [column (11)].

The deviator stress versus axial strain behavior predicted for the soil can be
plotted using data from columns (2) and (11). Also, the volumetric strain ver-
sus axial strain can be plotted using data from columns (6) and (11). Figure 2.15
shows the behavior predicted for this normally consolidated clay when tested in
consolidated–drained triaxial compression with a confining pressure of 206.7 kPa.
The figure also shows the behavior predicted for the same soil when subjected to
confining pressures of 68.9 and 137.8 kPa.
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FIGURE 2.15 Predicting the CD triaxial behavior of NC clay using a Cam clay model.
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2.5.10 Calculations of the Consolidated–Undrained Stress–Strain
Behavior of a Normally Consolidated Clay Using the Modified Cam
Clay Model

Figure 2.16a illustrates the behavior of a lightly overconsolidated soil specimen
in a CU test. Initially, the stress state of the specimen is located on the NCL as
indicated by point 1 in Figure 2.16b. The specimen is subjected to an all-around
confining pressure (isotropic consolidation) that brings the state of stress to point 2,
which corresponds to the preconsolidation pressure p′

c as shown in Figure 2.16. The
specimen is then unloaded to point 3, which corresponds the present pressure p′

0.
Now we can start shearing the specimen in an undrained condition by preventing
water from leaving the specimen. This means that there will be no volume change.
The total stress path during undrained shearing is a straight line, with a slope = 3,
emanating from point 3. Thus, the equation of the total stress path is give as

q = 3(p − p′
0) (2.40)
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FIGURE 2.16 Consolidated undrained triaxial test behavior of a lightly overconsolidated
clay.
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The effective stress path during undrained shearing is a vertical line (line 3–4 in
Figure 2.16a) in the elastic region within the initial yield surface. If the line were
not vertical, there would be volumetric strains resulting from changes in the mean
effective stress, and that is not admissible in an undrained condition. At point 4
the soil starts yielding. The effective stress path will turn to the left toward the
critical-state line. During that time the yield surface grows (strain hardening) until
the effective stress path touches the critical-state line at point 5, where failure
occurs. Note how points 2, 3, 4, and 5 travel along a horizontal line, from right to
left, in the e–p′ plane as shown in Figure 2.16b. If line 2–5 were not horizontal in
the e–p′ plane, there would be a change in the void ratio, which is not admissible
in this undrained condition.

Point 5 in Figure 2.16 describes the stress state at failure. With reference to
Figure 2.16b, point 5 has a void ratio ef (on the critical-state line) which is identical
to the initial void ratio e0 at point 3. The equation of the critical-state line, (2.21),
in the e–ln p′ plane is given as

ef = e� − λ ln p′

At point 5 this equation becomes

ef = e0 = e� − λ ln p′
f

Rearranging this equation yields

p′
f = exp

(
e� − e0

λ

)
(2.41)

where p′
f is the mean effective stress at failure. But

qf = Mp′
f

Therefore,

qf = M exp

(
e� − e0

λ

)
(2.42)

where qf is the shear stress at failure.
In Figure 2.16a, the horizontal distance between the total stress path and the

effective stress path is the excess pore water pressure. At failure (point 5), we can
write

�uf = pf − p′
f

Applying (2.40), the total stress path equation, to the at-failure stress conditions
(i.e., at p = pf and q = qf ), we get

qf = 3(pf − p′
0)

or

pf = p′
0 + qf

3
= p′

0 + Mp′
f

3
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but

�uf = pf − p′
f = p0 + M

3
p′

f − p′
f = p0 +

(
M

3
− 1

)
p′

f

Substituting (2.41) into the equation above yields

�uf = p0 +
(

M

3
− 1

)
exp

(
e� − e0

λ

)
(2.43)

Using (2.34) to (2.38), we predict the stress–strain behavior of a normally consol-
idated (NC) clay in a CU triaxial test. These equations are given in an incremental
form. Thus, increments of stress will be applied in accordance with the CU effec-
tive stress path, and the resulting strain increments will be calculated. The strain
increments are then added together to calculate the total strain.

The following step-by-step procedure, adopted from Budhu (2007), can be pro-
grammed in a spreadsheet to calculate the stress–strain behavior. It is to be noted
that Budhu’s procedure can be used for the more general case of a lightly over-
consolidated soil.

2.5.11 Step-by-Step Calculation Procedure for a CU Triaxial Test on
NC Clays

Step 1: Calculate the mean effective stress at failure using (2.41):

p′
f = exp

(
e� − e0

λ

)

Then choose a small mean effective stress increment, �p′, such that �p′ =
(p′

0 − p′
f )/N , where N is an integer. In the spreadsheet example in Table 2.2

we used N = 14. You can use a larger value of N for better accuracy. In
the first column of the spreadsheet, use p′ = p′

0, p′
0 − �p′, p′

0 − 2�p′, p′
0 −

3�p′, . . . , p′
f . The spreadsheet is used to predict the consolidated–undrained

triaxial behavior of a normally consolidated clay specimen subjected to a con-
fining pressure σ′

3 = 206.7 kPa. Column (1) shows the variation in the mean
effective stress. The initial mean effective stress p′

0 = 206.7 kPa is used along
with �p′ = 7.0 kPa.

Step 2: Update the yield surface for each load increment. Figure 2.17 shows two
consecutive yield surfaces corresponding to two consecutive points (points 1
and 2) along the effective stress path of a CU triaxial test. Point 1 corresponds
to a mean effective stress p′

1 located on a yield surface with a major axis (p′
c)1.

Point 2 corresponds to a mean effective stress p′
2 located on a yield surface
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FIGURE 2.17 Evolution of a Cam clay yield surface under CU triaxial stress conditions.

with a major axis (p′
c)2. With the help of Figure 2.17, it can be shown that

(p′
c)2 = (p′

c)1

(
p′

1

p′
2

)κ/(λ−κ)

(2.44)

In column (2) of Table 2.2, calculate the updated yield surface for each load
increment using the general equation

(p′
c)i = (p′

c)i−1

(
p′

i−1

p′
i

)κ/(λ−κ)

(2.45)

where (p′
c)i is the preconsolidation pressure in the current increment, (p′

c)i−1

the preconsolidation pressure in the preceding increment, p′
i the mean effec-

tive stress in the current increment, and p′
i−1 the mean effective stress in the
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preceding increment. Because the soil is normally consolidated, use p′
c = p′

0
in the first row.

Step 3: In column (3), calculate q for each increment using (2.46):

q = Mp′
√

p′
c

p′ − 1 (2.46)

This equation is obtained from the equation of the yield surface, (2.23).

Step 4: Calculate the elastic volumetric strain increment using (2.35):

dεe
v = κ

1 + e

dp′

p′ column (4)

Note that e in this equation is constant (= e0) because of the undrained con-
dition. Note also in Table 2.2 that the elastic volumetric strain increments
calculated are all negative because the change in the mean effective stress
is negative under undrained triaxial conditions.

Step 5: Calculate the plastic volumetric strain increment:

dεp
v = −dεe

v = −κ

1 + e

dp′

p′ column (5)

Again, this is because of the undrained condition (no volume change), in which

dεv = dεe
v + dεp

v = 0 → dεe
v = −dεp

v

Step 6: Calculate the plastic shear strain increment using (2.38):

dεp
s = dεp

v

2η

M2 − η2
column (6)

Step 7: Calculate the elastic shear strain increment using

dεe
s = �q

3G
column (7)

where G is the shear modulus given by (2.28).
In the present example, use e0 = 0.889, κ = 0.026, and ν = 0.3 [see (2.28)].

Step 8: Calculate the shear strain increment using (2.33):

dεs = dεe
s + dεp

s column (8)

Step 9: Calculate the total shear strain (εs)k = ∑i=k
i=1 (dεs)i , where k is the current

row. This is done in column (9).
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Step 10: Calculate the axial strain ε1 [column (10)]. Under undrained conditions
we have

εv = ε1 + 2ε3 = 0 → ε1 = −2ε3

But

εs = 2
3 (ε1 − ε3)

Therefore, ε1 = εs .

Step 11: Calculate the current total mean stress using the equation of the total
stress path, (2.40):

p = p′
0 + q

3
column (11)

Step 12: Calculate the pore water pressure increment: �u = p − p′ [column (12)].

The deviator stress versus axial strain behavior predicted for the soil can be
plotted using data from columns (3) and (10), respectively. Also, the excess pore
water pressure versus axial strain can be plotted using data from columns (12)
and (10), respectively. Figure 2.18 shows the behavior predicted for this normally
consolidated clay when tested in consolidated undrained triaxial compression with
a confining pressure of 206.7 kPa. The figure also shows the behavior predicted
for the same soil when subjected to confining pressures of 68.9 and 137.8 kPa.

2.5.12 Comments on the Modified Cam Clay Model

The modified Cam clay model formulations are based on the triaxial stress condition
in which the intermediate and the minor principal stresses are equal (σ2 = σ3). It
is desirable, however, to express the modified Cam clay model in terms of stress
invariants, described below, so that one can use the model in a more generalized
manner. This is particularly useful for problems involving three-dimensional stress
conditions and plane strain conditions that are common in geotechnical engineering.
Here we present a summary of stress and strain invariants that are commonly used in
engineering mechanics and soil models. Then we present the extended (generalized)
Cam clay model.

2.6 STRESS INVARIANTS

In the following, all stresses are assumed to be effective stresses. This means that
the value of the excess pore water pressure is known and is subtracted from total
stresses to obtain the effective stresses. The stress characteristics equation is

σ3 − I1-stressσ
2 + I2-stressσ − I3-stress = 0 (2.47)
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FIGURE 2.18 Predicting the CU triaxial behavior of NC clay using the Cam clay model.

where I1-stress, I2-stress, and I3-stress, the stress invariants, are defined as follows:

I1-stress = σ11 + σ22 + σ33 (2.48)

I2-stress =
∣∣∣∣∣ σ11 τ12

τ21 σ22

∣∣∣∣∣+
∣∣∣∣∣ σ22 τ23

τ32 σ33

∣∣∣∣∣+
∣∣∣∣∣ σ11 τ13

τ31 σ33

∣∣∣∣∣ (2.49)

I3-stress =

∣∣∣∣∣∣∣
σ11 τ12 τ13

τ21 σ22 τ23

τ31 τ32 σ33

∣∣∣∣∣∣∣ (2.50)

Three other invariants, J1, J2, and J3, are related to the stress invariants above.
These are called invariants of the stress tensor and defined as

J1 = I1-stress = σ11 + σ22 + σ33 (2.51)

J2 = 1
2 (I 2

1-stress − 2I2-stress) (2.52)

J3 = 1
3 (I 3

1-stress − 3I1-stressI2-stress + 3I3-stress) (2.53)
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2.6.1 Decomposition of Stresses

The stress matrix can be decomposed into a deviator stress matrix and a hydrostatic
stress matrix:


σ11 τ12 τ13

τ21 σ22 τ23

τ31 τ32 σ33


 =




S11 τ12 τ13

τ21 S22 τ23

τ31 τ32 S33


+




p 0 0

0 p 0

0 0 p


 (2.54)

where

p = J1

3
= σ11 + σ22 + σ33

3
(2.55)

On the right-hand side of (2.54), the first matrix represents the deviator stresses
in a soil element, and the second matrix represents the hydrostatic stresses. This
decomposition is convenient for soil modeling because we can assume that the
distortion of soil is caused by deviator stresses and that the soil volume change is
caused by hydrostatic stresses.

From (2.54), the deviator stress matrix is calculated as


S11 τ12 τ13

τ21 S22 τ23

τ31 τ32 S33


 =




σ11 τ12 τ13

τ21 σ22 τ23

τ31 τ32 σ33


−




p 0 0

0 p 0

0 0 p


 (2.56)

Using the deviator stresses calculated by (2.56), we can define a new set of invari-
ants called invariants of deviator stresses. The first invariant of deviator stress is

J1D = S11 + S22 + S33 = 0 (2.57)

The second invariant of deviator stress is

J2D = J2 − J 2
1

6
(2.58)

Using principal stresses, J2D can be expressed as

J2D = 1
6 [(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ1 − σ3)

2] (2.59)

The third invariant of deviator stress is

J3D = J3 − 2
3J1J2 + 2

27J 3
1 (2.60)

Example 2.1 In a triaxial stress state we have


σ11 τ12 τ13

τ21 σ22 τ23

τ31 τ32 σ33


 =




σ1 0 0

0 σ3 0

0 0 σ3






56 ELASTICITY AND PLASTICITY

Calculate (a) the deviator stress matrix using (2.56), and (b) the second invariant
of deviator stress using (2.58).

SOLUTION: (a) We start by calculating the hydrostatic pressure p using (2.55):

p = J1

3
= σ1 + 2σ3

3

From (2.56) we can write




S11 τ12 τ13

τ21 S22 τ23

τ31 τ32 S33


 =




σ1 0 0

0 σ3 0

0 0 σ3


−




σ1 + 2σ3

3
0 0

0
σ1 + 2σ3

3
0

0 0
σ1 + 2σ3

3




or




S11 τ12 τ13

τ21 S22 τ23

τ31 τ32 S33


 =




2(σ1 − σ3)

3
0 0

0
σ3 − σ1

3
0

0 0
σ3 − σ1

3




Therefore,

S11 = 2(σ1 − σ3)

3
and

S22 = S33 = −(σ1 − σ3)

3

Note that

S11 + S22 + S33 = 2(σ1 − σ3)

3
+ −(σ1 − σ3)

3
+ −(σ1 − σ3)

3
= 0

(b) To calculate the second invariant of deviator stress using (2.58), we need to
calculate J1 and J2:

I1-stress = σ1 + 2σ3

or
J1 = σ1 + 2σ3

I2-stress =
∣∣∣∣∣ σ1 0

0 σ3

∣∣∣∣∣+
∣∣∣∣∣ σ3 0

0 σ3

∣∣∣∣∣+
∣∣∣∣∣ σ1 0

0 σ3

∣∣∣∣∣ = 2σ1σ3 + σ2
3

J2 = 1

2
(I 2

1-stress − 2I2-stress) = 1

2
[(σ1 + 2σ3)

2 − 2(2σ1σ3 + σ2
3)] = σ2

1

2
+ σ2

3
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Substitute J1 and J2 into (2.58):

J2D = J2 − J 2
1

6
= σ2

1

2
+ σ2

3 − (σ1 + 2σ3)
2

6
= 1

3
(σ1 − σ3)

2

2.7 STRAIN INVARIANTS

The strain characteristics equation is

ε3 − I1-strainε
2 + I2-strainε − I3-strain = 0 (2.61)

where I1-strain, I2-strain, and I3-strain are the strain invariants, defined as

I1-strain = ε11 + ε22 + ε33 (2.62)

I2-strain =
∣∣∣∣∣ ε11 ε12

ε21 ε22

∣∣∣∣∣+
∣∣∣∣∣ ε22 ε23

ε32 ε33

∣∣∣∣∣+
∣∣∣∣∣ ε11 ε13

ε31 ε33

∣∣∣∣∣ (2.63)

I3-strain =

∣∣∣∣∣∣∣
ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

∣∣∣∣∣∣∣ (2.64)

A set of invariants related to the strain invariants, (2.62)–(2.64), are called invari-
ants of the strain tensor and defined as

I1 = I1-strain = ε11 + ε22 + ε33 (2.65)

I2 = 1
2 (I 2

1-strain − 2I2-strain) (2.66)

I3 = 1
3 (I 3

1-strain − 3I1-strainI2-strain + 3I3-strain) (2.67)

2.7.1 Decomposition of Strains

The strain matrix can be decomposed into a shear (distortion) strain matrix and a
volumetric strain matrix:




ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33


 =




E11 ε12 ε13

ε21 E22 ε23

ε31 ε32 E33


+




εv

3
0 0

0
εv

3
0

0 0
εv

3


 (2.68)

where

εv = I1 = ε11 + ε22 + ε33 (2.69)
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On the right-hand side of (2.68), the first matrix represents the shear (distortion)
strain in a soil element, and the second matrix represents the volumetric strains.
From (2.68) the distortion strain matrix is calculated as




E11 ε12 ε13

ε21 E22 ε23

ε31 ε32 E33


 =




ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33


−




εv

3
0 0

0
εv

3
0

0 0
εv

3


 (2.70)

Using the distortion strains calculated above, define the invariants of the distortion
strains as follows:

I1D = 0 (2.71)

I2D = I2 − I 2
1

6
(2.72)

I3D = I3 − 2

3
I1I2 + 2

27
I 3

1 (2.73)

2.8 EXTENDED CAM CLAY MODEL

Next, we present a brief description of the extended Cam clay model. The model
is described in greater detail in ABAQUS(2002). The modified Cam clay model,
described in some detail earlier, is a special case of the extended Cam clay model
described here.

The basic concepts of the extended Cam clay model are shown in Figure 2.19.
An elasticity model in which the bulk elastic stiffness increases as the material
undergoes compression, (2.26), is used to calculate the elastic strains. The plastic
strains are calculated using the theory of plasticity: A yield surface with associated
flow and a hardening rule that allows the yield surface to grow or shrink in the three-
dimensional stress space is used. In the extended model, the critical-state surface
is assumed to be a cone in the space of principal effective stress (Figure 2.19). The
vertex of the cone is coincident with the origin (zero effective stress), and its axis
is coincident with the hydrostatic pressure axis (σ1 = σ2 = σ3).

The projection of the three-dimensional elliptic yield surface on the �-plane (the
plane in the principal stress space orthogonal to the hydrostatic pressure axis) has
the general shape shown in Figure 2.20. The projection of the conical critical-state
surface on the p–t plane is a straight line passing through the origin with slope
M , as shown in Figure 2.21. Here the parameter t is a measure of shear stress
as defined below. The yield surface in the p–t plane consists of two elliptic arcs.
The first arc passes through the origin with its tangent perpendicular to the p-axis
and intersects the critical-state line where its tangent is parallel to the p-axis. The
second arc is a smooth continuation of the first arc through the critical-state line and
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FIGURE 2.19 Elements of the extended Cam clay model: yield and critical-state surfaces
in the principal stress space.
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FIGURE 2.20 Projection of the extended Cam clay yield surface on the �-plane. (Adapted
from ABAQUS, 2002.)

intersects the p-axis with its tangent at a 90◦ angle to that axis (see Figure 2.21).
Plastic flow is assumed to be normal to this surface.

The size of the yield surface is controlled by the hardening rule, which depends
only on the volumetric plastic strain component. Thus, when the volumetric plastic
strain is compressive, the yield surface grows in size. But when there is a dilative
plastic strain, the yield surface contracts. The three-dimensional yield surface is
defined as
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FIGURE 2.21 Extended Cam clay yield surface in the p′–t plane. (Adapted from
ABAQUS, 2002.)

f (p, q, r) = 1

β2

(p

a
− 1

)2 +
(

t

Ma

)2

− 1 = 0 (2.74)

where

p = J1

3
= σ1 + σ2 + σ3

3
(2.75)

q =
√

3J2D =
√

3

(
J2 − J 2

1

6

)
=
√

1

2
[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ1 − σ3)2]

(2.76)

r =
(

27

2
J3D

)1/3

=
(

27

2
J3 − 9J1J2 + J 3

1

)1/3

(2.77)

in which β is a constant used to modify the shape of the yield surface on the
“wet” side of the critical state; β = 1 can be used on the “dry” side of the critical
state, and β < 1 can be used in most cases on the wet side (Figure 2.21) to make
the curvature of the elliptic arc on the wet side different from that on the dry
side. a is a hardening parameter defined as the point on the p-axis at which the
evolving elliptic arcs of the yield surface intersect the critical-state line as indicated
in Figure 2.21. M is the slope of the critical-state line in the p–t plane (the ratio
of t to p at the critical state). t is a measure of shear stress calculated as t = q/g,
where g is a function used to control the shape of the yield surface in the �-plane
and is defined as

g = 2K

1 + K + (1 − K)(r/q)3
(2.78)
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where K is a constant. Setting K = 1 causes the yield surface to be independent
of the third stress invariant, and the projection of the yield surface on the �-plane
becomes a circle, reduced to a modified Cam clay yield surface (K = 1 → g =
1 → t = q). The effect of different values of K on the shape of the yield surface
in the �-plane is shown in Figure 2.20. To ensure convexity of the yield surface,
the range 0.778 ≤ K ≤ 1.0 should not be violated.

Associated flow is used in the extended Cam clay model (i.e., the plastic potential
is the same as the yield surface). The size of the yield surface is defined by the
parameter a; the evolution of this variable therefore characterizes the hardening or
softening of the material. The evolution of the parameter a is defined as

a = a0 exp

[
(1 + e0)

1 − J pl

λ − κJ pl

]
(2.79)

where J pl is the plastic part of the volume change J . The volume change is defined
as the ratio of current volume to initial volume: J = J pl + J e = (1 + e)/(1 + e0).
a0 is a constant parameter that defines the position of a at the beginning of the
analysis (preconsolidation pressure). The value of a0 can be specified directly or
can be computed as

a0 = 1

2
exp

(
eN − e0 − κ ln p0

λ − κ

)
(2.80)

in which p0 is the initial value of the mean effective stress and eN is the intercept
of the normal consolidation line (NCL) with the void ratio axis in the e–ln p′
plane, as shown in Figure 2.9.

2.9 MODIFIED DRUCKER–PRAGER/CAP MODEL

The Drucker–Prager/cap plasticity model has been widely used in finite element
analysis programs for a variety of geotechnical engineering applications. The cap
model is appropriate to soil behavior because it is capable of considering the effect
of stress history, stress path, dilatancy, and the effect of the intermediate principal
stress. The yield surface of the modified Drucker–Prager/cap plasticity model con-
sists of three parts: a Drucker–Prager shear failure surface, an elliptical cap, which
intersects the mean effective stress axis at a right angle, and a smooth transition
region between the shear failure surface and the cap, as shown in Figure 2.22.

Elastic behavior is modeled as linear elastic using the generalized Hooke’s law.
Alternatively, an elasticity model in which the bulk elastic stiffness increases
as the material undergoes compression can be used to calculate the elastic
strains [equation (2.26)]. The onset of plastic behavior is determined by the
Drucker–Prager failure surface and the cap yield surface. The Drucker–Prager
failure surface is given by

Fs = t − p tan β − d = 0 (2.81)
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FIGURE 2.22 Yield surfaces of the modified cap model in the p–t plane. (Adapted from
ABAQUS, 2002.)
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FIGURE 2.23 Projection of the modified cap yield/flow surfaces on the �-plane. (Adapted
from ABAQUS, 2002.)

where β is the soil’s angle of friction and d is its cohesion in the p–t plane, as
indicated in Figure 2.22.

As shown in the figure, the cap yield surface is an ellipse with eccentricity = R

in the p–t plane. The cap yield surface is dependent on the third stress invariant, r ,
in the deviatoric plane as shown in Figure 2.23 [equations (2.76) and (2.77)]. The
cap surface hardens (expands) or softens (shrinks) as a function of the volumetric
plastic strain. When the stress state causes yielding on the cap, volumetric plastic
strain (compaction) results, causing the cap to expand (hardening). But when the
stress state causes yielding on the Drucker–Prager shear failure surface, volumetric
plastic dilation results, causing the cap to shrink (softening). The cap yield surface
is given as
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Fc =
√

(p − pa)2 +
(

Rt

1 + α − α/cos β

)2

− R(d + pa tan β) = 0 (2.82)

where R is a material parameter that controls the shape of the cap and α is a small
number (typically, 0.01 to 0.05) used to define a smooth transition surface between
the Drucker–Prager shear failure surface and the cap:

Ft =
√

(p − pa)2 +
[
t −

(
1 − α

cos β

)
(d + pa tan β)

]2

− α(d + pa tan β) = 0

(2.83)

pa is an evolution parameter that controls the hardening–softening behavior as
a function of the volumetric plastic strain. The hardening–softening behavior is
simply described by a piecewise linear function relating the mean effective (yield)
stress pb and the volumetric plastic strain pb = pb(ε

pl
vol), as shown in Figure 2.24.

This function can easily be obtained from the results of one isotropic consoli-
dation test with several unloading–reloading cycles. Consequently, the evolution
parameter, pa , can be calculated as

pa = pb − Rd

1 + R tan β
(2.84)

2.9.1 Flow Rule

In this model the flow potential surface in the p–t plane consists of two parts,
as shown in Figure 2.25. In the cap region the plastic flow is defined by a

Plastic Volumetric Strain, pl
volε

p b

FIGURE 2.24 Typical cap hardening behavior. (Adapted from ABAQUS, 2002.)
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FIGURE 2.25 Flow potential of the modified cap model in the p–t plane. (Adapted from
ABAQUS, 2002.)

flow potential that is identical to the yield surface (i.e., associated flow). For the
Drucker–Prager failure surface and the transition yield surface, a nonassociated
flow is assumed: The shape of the flow potential in the p–t plane is different from
the yield surface as shown in Figure 2.25. In the cap region the elliptical flow
potential surface is given as

Gc =
√

(p − pa)2 +
(

Rt

1 + α − α/cos β

)2

(2.85)

The elliptical flow potential surface portion in the Drucker–Prager failure and
transition regions is given as

Gs =
√

[(pa − p) tan β]2 +
(

t

1 + α − α/cos β

)2

(2.86)

As shown in Figure 2.25, the two elliptical portions, Gc and Gs , provide a contin-
uous potential surface. Because of the nonassociated flow used in this model, the
material stiffness matrix is not symmetric. Thus, an unsymmetric solver should be
used in association with the cap model.

2.9.2 Model Parameters

We need the results of at least three triaxial compression tests to determine the
parameters d and β. The at-failure conditions taken from the tests results can be
plotted in the p–t plane. A straight line is then best fitted to the three (or more)
data points. The intersection of the line with the t-axis is d and the slope of the
line is β. We also need the results of one isotropic consolidation test with several
unloading–reloading cycles. This can be used to evaluate the hardening–softening
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FIGURE 2.26 Isotropic consolidation test results for Example 2.2.

law as a piecewise linear function relating the hydrostatic compression yield stress
pb and the corresponding volumetric plastic strain pb = pb(ε

pl
vol)(Figure 2.24). The

unloading–reloading slope can be used to calculate the volumetric elastic strain that
should be subtracted from the volumetric total strain to calculate the volumetric
plastic strain.

Example 2.2 Three CD and three CU triaxial test results of a normally con-
solidated clay at three confining pressures are shown in Figures 2.15 and 2.18,
respectively. (a) Calculate the soil’s angle of friction β and its cohesion d in the
p–t plane. (b) Using the results of an isotropic consolidation test performed on the
same soil (Figure 2.26), calculate the hardening curve assuming the initial condi-
tions p′

0 =210 kPa and e0 =0.889. Note that the compression index of the soil is
0.4 and the swelling index is 0.06.

SOLUTION: (a) The two tables below summarize the at-failure test results taken
from Figures 2.15 and 2.18 for CD and CU triaxial test conditions, respectively.
The shear stress measure t and the mean effective stress p′ are calculated for all
tests.

CD triaxial test (units: kPa):

Test σ′
3 t = q = σ′

1 − σ′
3 σ′

1 p′ = (σ′
1 + 2σ′

3)/3

1 68.9 101.283 170.183 102.661
2 137.8 202.566 340.366 205.322
3 206.7 303.849 510.549 307.983
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FIGURE 2.27 Mohr–Coulomb failure criterion.

CU triaxial test (units: kPa):

Test σ3 σ1 − σ3 u σ1 σ′
1 σ′

3 t = q = σ′
1 − σ′

3 p′ = (σ′
1 + 2σ′

3)/3

1 68.9 37.895 41.34 106.795 65.455 27.56 37.895 40.19167
2 137.8 75.101 81.302 212.901 131.599 56.498 75.101 81.53167
3 206.7 112.307 121.953 319.007 197.054 84.747 112.307 122.1827

Six effective-stress Mohr’s circles corresponding to failure stresses obtained
from the triaxial test results (Figures 2.15 and 2.18) are plotted in Figure 2.27.
Subsequently, the effective-stress Mohr–Coulomb failure criterion is plotted as
a straight line that is tangential to the six circles. The soil strength parame-
ters φ′ = 25.4◦ and c′ = 0 kPa are obtained from the slope and intercept of the
Mohr–Coulomb failure criterion.

For triaxial stress conditions, the Mohr–Coulomb parameters (φ′ = 25.4◦ and
c′ = 0 kPa) can be converted to Drucker–Prager parameters as follows:

tan β = 6 sin φ′

3 − sin φ′ for φ′ = 25.4◦ → β = 45◦

d = 18c cos φ′

3 − sin φ′ for c′ = 0 → d = 0

An alternative procedure for determining β and d is to plot the at-failure stresses
of all six triaxial tests in the p′ = (σ′

1f + 2σ′
3f )/3 versus t = q = σ′

1f − σ′
3f plane

as shown in Figure 2.28. The data points are best fitted with a straight line whose
slope is equal to tan β = 1; thus, β = 45◦. The line intersects with the vertical axis
at d = 0.

(b) The cap hardening curve is obtained from the isotropic consolidation test
results shown in Figure 2.26. From the figure we can calculate the plastic volu-
metric strain as

εp
v = λ − κ

1 + e0
ln

p′

p′
0

= Cc − Cs

2.3(1 + e0)
ln

p′

p′
0
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For this clayey soil we have λ = 0.174, κ = 0.026, p′
0 = 210 kPa, and e0 = 0.889;

therefore,

εp
v = 0.174 − 0.026

1 + 0.889
ln

p′

210
= 0.07834 ln

p′

210

which describes the evolution of plastic volumetric strain (the hardening param-
eter) with the mean effective stress. A graphic representation of the equation (cap
hardening curve) is shown in Figure 2.29.
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FIGURE 2.29 Evaluating the modified cap model hardening curve.
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2.10 LADE’S SINGLE HARDENING MODEL

Lade’s model is an elastoplastic model with a single yield surface expressed in
terms of stress invariants. The hardening parameter in this model is assumed to be
the total plastic work (i.e., the plastic work done by shear strains and volumetric
strains), which is used to define the evolution of the yield surface. The model
involves 11 parameters that can be determined from three CD triaxial compression
tests and one isotropic compression test.

The total strain increments are divided into elastic and plastic strain components:

dε = dεe + dεp (2.87)

For a given effective stress increment, the elastic and plastic strain components are
calculated separately, the elastic strains by a nonlinear form of Hooke’s law and
the plastic strains by a plastic stress–strain law.

2.10.1 Elastic Behavior

The elastic strain increments are calculated using (2.88), which accounts for the
nonlinear variation of Young’s modulus with a stress state (Lade and Nelson, 1987):

E = Mpa

[(
I1

pa

)2

+ 6
1 + ν

1 − 2ν

(
J ′

2

p2
a

)]λ

(2.88)

where ν is Poisson’s ratio, I1 is the first invariant of the stress tensor,

I1 = σx + σy + σz (2.89)

J
′
2 is the second invariant of the deviatoric stress tensor,

J
′
2 = 1

6
[(σx − σy)

2 + (σy − σz)
2 + (σz − σx)

2] + τ2
xy + τ2

yz + τ2
zx (2.90)

and pa is the atmospheric pressure expressed in the same units as E, I1, and J
′
2. M

is the modulus number and λ is the exponent, both are dimensionless constants. The
parameters M , λ, and ν can be determined from the unloading–reloading cycles of
triaxial compression tests.

2.10.2 Failure Criterion

In Lade’s model, the relationship of stresses at failure is expressed in terms of the
first and third stress invariants, I1 and I3:

fn =




(
I 3

1

I3
− 27

)(
I1

pa

)m

(2.91a)

(2.91b)
η1 at failure
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FIGURE 2.30 Lade’s model failure criterion. (Adapted from Lade and Jakobsen, 2002.)

where

I3 = σxσyσz + τxyτyzτzx + τyxτzyτxz − (σxτyzτzy + σyτzxτxz + σzτxyτyx) (2.92)

The parameters η1 and m are dimensionless constants that can be determined from
triaxial compression test results. The shape of the failure criterion, (2.91), in prin-
cipal stress space is shown in Figure 2.30. The projection of the failure criterion
on the �-plane is triangular with smoothly rounded edges, as shown in the figure.
Lade and Kim (1988) indicated that the apex angle of the failure criterion increases
with the value of η1. The failure surface is always concave toward the hydrostatic
pressure axis, and its curvature increases with the value of m.

2.10.3 Plastic Potential and Flow Rule

Plastic flow occurs when the state of stress touches the yield criterion fn, causing
the material to undergo plastic deformations. The plastic strain increments are
calculated from the flow rule:

d(ε)p = dλp

dgp

d(σ)
(2.93)
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where: (σ) is the stress matrix, defined as

(σ) =




σxx τxy τxz

τyx σyy τyz

τzx τzy σzz




and (ε)p is the plastic component of the total strain matrix (ε), defined as

(ε) =




εxx εxy εxz

εyx εyy εyz

εzx εzy εzz




(b)
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σ 1

2σ3

σ 1
= σ 2

= σ 3

σ

= σ 3tic
 A
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HyHHHyyHyy

FIGURE 2.31 Lade’s model plastic potential. (Adapted from Lade and Jakobsen, 2002.)
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λp is the proportionality factor (a positive scalar) and gp is the plastic potential
function, given as

gp =
(

ψ1
I 3

1

I3
− I 2

1

I2
+ ψ2

)(
I1

pa

)µ

(2.94)

where I1 and I3 are as given in (2.89) and (2.92). I2 is the second stress invariant,
defined as

I2 = τxyτyx + τyzτzy + τzxτxz − (σxσy + σyσz + σxσz) (2.95)

ψ2 and µ are material parameters that can be determined from the results of triaxial
compression tests, and ψ1 is a parameter related to the curvature parameter m of
the failure criterion as suggested by Kim and Lade (1988):

ψ1 = 0.00155m−1.27 (2.96)

The parameter ψ1 is a weighting factor between the triangular shape and the circular
shape shown in Figure 2.31a. The parameter ψ2 controls the intersection of the
plastic potential with the hydrostatic pressure axis, and the exponent µ determines
the curvature of the plastic potential in the principal stress space, as shown in
Figure 2.31b.

The shape of the plastic potential function is shown in Figure 2.31b. The plastic
potential is similar in shape to the failure surface (described earlier). The derivatives
of gp with respect to stress components [used in (2.93)] are defined as follows:




dgp

dσx

dgp

dσy

dgp

dσz

dgp

dσyz

dgp

dσxz

dgp

dσxy




=
(

I1

pa

)µ




G − (σy + σz)
I 2

1

I 2
2

− ψ1(σyσz − τ2
yz)

I 3
1

I 2
3

G − (σz + σx)
I 2

1

I 2
2

− ψ1(σzσx − τ2
zx)

I 3
1

I 2
3

G − (σx + σy)
I 2

1

I 2
2

− ψ1(σxσy − τ2
xy)

I 3
1

I 2
3

2
I 2

1

I 2
2

τyz − 2ψ1(τxyτzx + σxτyz)
I 3

1

I 2
3

2
I 2

1

I 2
2

τzx − 2ψ1(τxyτyz + σyτzx)
I 3

1

I 2
3

2
I 2

1

I 2
2

τxy − 2ψ1(τyzτzx + σzτxy)
I 3

1

I 2
3




(2.97)
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where G is the shear modulus, which is function of I1, I2, and I3 as follows:

G = ψ1(µ + 3)
I 2

1

I3
− (µ + 2)

I1

I2
+ µ

I1
ψ2 (2.98)

2.10.4 Yield Criterion

Most materials behave elastically within their loading limits (i.e., within their ini-
tial yield surfaces); once the stresses or strains reach the limit, yield and plastic
deformation occur. Lade and Kim (1988) employed an isotropic yield function
given as

fp = f
′
p(I1, I2, I3) − f

′′
p (Wp) = 0 (2.99)

where

f
′
p =

(
ψ1

I 3
1

I3
− I 2

1

I2

)
(
I1

pa

)heq (2.100)

The parameter h in (2.100) is determined based on the assumption that the plastic
work is constant along a yield surface. The parameter q varies with the stress level
S. Let’s define the stress level as

S = fn

η1
= 1

η1

(
I 3

1

I3
− 27

)(
I1

pa

)m

(2.101)

in which fn is given by (2.91a), and η1 is the value of fn at failure, (2.91b).
The stress level S varies from zero at the hydrostatic pressure axis to unity at the
failure surface (i.e., fn = η1). The parameter q [equation (2.100)] varies with S as
follows:

q = αS

1 − (1 − α)S
(2.102)

where α is a constant that can be determined by fitting (2.102) to the results of
triaxial compression tests, as we show later in an example.

Work hardening occurs when the yield surface expands isotropically as the
plastic work increases:

f ′′
p =

(
1

D

)1/ρ (
Wp

pa

)1/ρ

(2.103)

where ρ and D are constants. This means that f ′′
p increases only if the plastic work

increases. D and ρ are given as

D = C

(27ψ1 + 3)ρ
(2.104)
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and

ρ = p

h
(2.105)

The parameters C and p in (2.104) and (2.105) can be estimated from the results
of an isotropic compression test by best-fitting (2.106) with the test results:

Wp = Cpa

(
I1

pa

)p

(2.106)

The shape of the yield surface is shown in Figure 2.32. When a stress increment
is applied, the plastic work increases and the isotropic yield surface expands until
the current stress state hits the failure surface. The relationship between f ′′

p and
Wp is shown in Figure 2.33. Note that f ′′

p increases with increasing Wp and that
the slope of the curve decreases with increasing plastic work.
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FIGURE 2.32 Lade’s model yield function. (Adapted from Lade and Jakobsen, 2002.)
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FIGURE 2.33 Hardening and softening definition in Lade’s model. (Adapted from Lade
and Jakobsen, 2002.)

For work softening, the yield surface contracts isotropically as

f ′′
p = Ae−B(Wp/pa) (2.107)

With the help of Figure 2.33, the constants A and B can be calculated from the
value of f ′′

p and the slope of the hardening curve at the point of peak failure at
which S = 1; therefore,

A = [f ′′
p eB(Wp/pa)]S=1 (2.108)

and

B =
[
b

df ′′
p

d(Wp/pa)

1

f ′′
p

]
S=1

(2.109)

Note that df ′′
p is negative during softening. Also, parameter b in (2.109) ranges

from zero to unity. If b = 0 is used, the material will behave in a perfectly plastic
manner.

The relationship between the plastic work increment and the proportionality
factor dλp [see (2.93)] can be expressed in terms of the plastic potential gp

[see (2.94)] as

dλp = dWp

µgp

(2.110)

The increment of plastic work in (2.110) can be calculated by differentiation of the
hardening equation (2.103) and the softening equation (2.107). The main features
of the single hardening model are summarized in Table 2.3, which also describes
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TABLE 2.3 Components and Their Physical Significance in the Single Hardening
Model (adapted from Lade, 2005)

Component Function

Elastic behavior Hooke’s law Produces elastic strains whenever
the stresses change

Plastic behavior Failure criterion Imposes limits on stress states that
can be reached

Plastic potential function Produces relative magnitudes of
plastic strain increments (function
similar to Poisson’s ratio for elastic
strains)

Yield criterion Determines when plastic strain
increments occur

Hardening–softening
region

Determines magnitudes of plastic
strain increments

TABLE 2.4 Components and Number of
Parameters in the Single Hardening Model

Component Parameters

Hooke’s law ν, M, λ

Failure criterion η1, m

Plastic potential function µ, ψ2

Yield criterion h, α

Hardening–softening region C, p

the function of each feature and its physical significance. The single hardening
model parameters are summarized in Table 2.4.

Example 2.3 : Obtaining Lade’s Model Parameters In this example we explain
the procedures for estimating Lade’s model parameters for a dense silty sand (SP-
SM of the USC system). The results of three conventional CD triaxial compression
tests conducted on reconstituted soil specimens are shown in Figure 2.34. Also, the
results of a hydrostatic compression test conducted on a reconstituted soil specimen
are shown in Figure 2.35. Other soil characteristics are listed below.

Gradation:

Percent passing 19-mm sieve = 100%

Percent passing No. 40 sieve = 59%

Percent passing No. 200 sieve = 8.5%

Elastic behavior Poisson’s ratio ν may be determined from the initial slope,
�εv/�ε1, of the unloading–reloading line of the volume change curve in the triaxial
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FIGURE 2.35 Isotropic consolidation test results for a silty clay.
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compression test. The strains on the unloading–reloading line are purely elastic,
and Poisson’s ratio is determined as

ν = −�ε3

�ε1
= 1

2

(
1 − �εv

�ε1

)
(2.111)

For the present material we assume that ν = 0.3 because of lack of unload-
ing–reloading cycles in the triaxial tests.

To determine the values of M and λ, let us rewrite (2.88) as

log

(
E

pa

)
= log M + λ log

[(
I1

pa

)2

+ 6
1 + ν

1 − 2ν

J
′
2

p2
a

]
(2.112)

The initial slopes of the stress–strain curves (Figure 2.36) represent the initial
elastic moduli (E’s) of the soil under different confining pressures. By plotting
E/pa versus the stress function on the right-hand side of (2.112), using a log-log
scale (Figure 2.37), the value of M ≈ 250 is determined as the intercept of the
best-fitting line with the vertical line

log

[(
I1

pa

)2

+ 6
1 + ν

1 − 2ν

J
′
2

p2
a

]
= 1

The slope of the straight line is the exponent λ (≈ 0.21).
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FIGURE 2.36 Determination of the initial elastic modulus for different confining
pressures.
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Failure criterion The expression for the failure criterion in (2.91) is rewritten as

log

(
I 3

1

I3
− 27

)
= log η1 + m log

pa

I1
(2.113)

By plotting log[(I 3
1 /I3) − 27] versus log(pa/I1), as shown in Figure 2.38, the value

of η1 (≈ 52) is determined as the intercept between the best-fitting line and the
vertical line emanating from log(pa/I1) = 1. The slope of the line is the exponent
m (≈ 0.154).

Plastic Potential Parameters For the plastic potential we need to determine the
parameter ψ1 from (2.96) and the parameters ψ2 and µ from triaxial compression
test data. To determine the parameters ψ2 and µ we use the definition of the
incremental plastic strain ratio given as

νp = −dε
p

3

dε
p

1

(2.114)

The plastic strain increments in (2.114) are calculated from the results of the tri-
axial compression tests by subtracting the elastic strain increments from the total
strain increments. To obtain the plastic strain increments under triaxial compression
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conditions (σ2 = σ3), one can substitute (2.93) and (2.97) into (2.114) to derive

ξy = 1

µ
ξx − ψ2 (2.115)

where

ξx = 1

1 + νp

[
I 3

1

I 2
2

(σ1 + σ3 + 2νpσ3) + ψ1
I 4

1

I 2
3

(σ1σ3 + νpσ2
3)

]
− 3ψ1

I 3
1

I3
+ 2

I 2
1

I2

(2.116)
and

ξy = ψ1
I 3

1

I3
− I 2

1

I2
(2.117)

Now, if we plot (2.116) versus (2.117) for the three triaxial tests (i.e., ξx versus
ξy , as shown in Figure 2.39), we can best fit the data with a straight line whose
slope is 1/µ and whose intercept with the vertical is −ψ2 [see (2.115)]. As shown
in Figure 2.39, the value of 1/µ is approximately 0.44, and the value of −ψ2 is
approximately 3.41; thus, ψ2 ≈ −3.41.

Yield criterion and work hardening–softening relation The work hardening
relation along the hydrostatic axis, expressed by Wp = Cpa(I1/pa)

p, (2.106), can
be used to determine the parameters C and p that are required for the determination
of q in the yield criterion, (2.100). The plastic work along the hydrostatic axis is
calculated from

Wp =
∫

(σ)T d(ε)p (2.118)
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FIGURE 2.39 Determination of Lade’s model parameters µ and ψ2.

For isotropic compression test conditions, (2.118) reduces to

Wp =
∫

σ3 dεp
v (2.119)

The results of the isotropic compression test (Figure 2.35) can be plotted in the
log(Wp/pa) versus log(I1/pa) plane, as shown in Figure 2.40. The plastic, volu-
metric strains to be used in calculation of the plastic work [equation (2.119)] are
calculated by subtracting the elastic volumetric strains from the total volumetric
strains taken from the results of the isotropic compression test. Note that for the
isotropic compression stress condition, I1/pa is equal to 3σ3/pa . The data points in
Figure 2.40 are best fitted with a line whose intercept with log(I1/pa) = 1 line is
C (≈ 0.0002) and whose slope is p (≈ 1.6).

The yield criterion in (2.100) requires two parameters, h and q. The value of h

is determined on the basis that the plastic work is constant along a yield surface.
Thus, for two stress points, A on the hydrostatic axis and B on the failure surface,
the following expression is obtained for h:

h = ln{[ψ1(I
3
1B/I3B) − (I 2

1B/I2B)]e/(27ψ1 + 3)}
ln(I1A/I1B)

(2.120)

in which e is the base of the natural logarithm.
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FIGURE 2.40 Determination of Lade’s model parameters C and p.
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FIGURE 2.41 Determination of Lade’s model parameter α.

Substituting (2.100) and (2.103) into (2.99) and solving for q, we get

q = ln
(Wp/Dpa)

1
ρ

[ψ1(I
3
1 /I3) − (I 2

1 /I2)](I1/pa)h
(2.121)

The variation of q from (2.121) with S from (2.101) is shown in Figure 2.41.
This variation may be expressed by (2.102), in which α is constant. The best fit
of (2.102) to the data shown in Figure 2.41 is obtained when α = 0.25. Note that
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TABLE 2.5 Lade’s Model Parameters for Dense Silty Sand

Parameter Value

Failure criterion m 0.154
η1 52

Elastic parameters M 250
λ 0.21
υ 0.3

Plastic potential function ψ2 −3.42
µ 2.3

Work hardening law C 0.0002
p 1.6

Yield function α 0.25
h 0.83

(2.102) is applicable only for S < 1 and q < 1. Table 2.5 summarizes Lade’s model
soil parameters.

2.10.5 Predicting Soil’s Behavior Using Lade’s Model: CD Triaxial
Test Conditions

In the following, Lade’s elastoplastic constitutive model with a single yield surface
is implemented in a spreadsheet that can be used to predict soil behavior in consol-
idated drained triaxial test conditions. The model parameters can be obtained from
a set of triaxial tests and one isotropic compression test following the procedures
presented in the preceding section. To make certain that the model parameters are
correct, one can use the spreadsheet (file: Example 2.4. spread sheet) developed
here to back-calculate the experimental stress–strain and volumetric strain curves
under different confining pressures. The reader can gain great insight into Lade’s
model by developing his or her own spreadsheet, or at least by studying the steps
involved in the spreadsheet presented in this section. Once the model parameters
are verified, they can be used for analysis of geotechnical problems using Lade’s
model embodied in a finite element program, for example.

The prediction of stress–strain behavior can be made using (2.87) to (2.121).
For convenience, in the following step-by-step procedure, we present the equations
needed again instead of referring to them.

Step 1: After obtaining all 11 material parameters, let us calculate the subpara-
meters (ψ1, D, and ρ):

(1.1) ψ1 = 0.00155m−1.27

(1.2) D = C

(27ψ1 + 3)ρ

(1.3) ρ = p

h
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Step 2: Set the initial value of σ1 (axial stress) equal to σ3 (confining pressure) to
establish the initial stress conditions, then specify a small stress increment dσ1

that can be added to the initial stress repeatedly until reaching the peak when
fn = η1. After the peak, reduce the axial stress using the same stress increment
until reaching the stress level required for which the strains will be calculated.
Note that σ2 and σ3 are kept constant throughout the analysis (σ2 = σ3). fn is
calculated for each stress level using the equation

fn =
(

I 3
1

I3
− 27

)(
I1

pa

)m

in which

I1 = σx + σy + σz

and

I3 = σxσyσz + τxyτyzτzx + τyxτzyτxz − (σxτyzτzy + σyτzxτxz + σzτxyτyx)

Step 3: Compute the stress invariants I1, I2, I3, and J ′
2; stress-level parameters, S

and q; and the yield criterion, f ′
p.

(3.1) I1 = σx + σy + σz

(3.2) I2 = τxyτyx + τyzτzy + τzxτxz − (σxσy + σyσz + σxσz)

(3.3) I3 = σxσyσz + τxyτyzτzx + τyxτzyτxz

−(σxτyzτzy + σyτzxτxz + σzτxyτyx)

(3.4) J
′
2 = 1

6
[(σx − σy)

2 + (σy − σz)
2 + (σz − σx)

2] + τ2
xy + τ2

yz + τ2
zx

(3.5) S = fn

η1
= 1

η1

(
I 3

1

I3
− 27

)(
I1

pa

)m

(3.6) q = αS

1 − (1 − α)S

(3.7) f
′
p =

(
ψ1

I 3
1

I3
− I 2

1

I2

)(
I1

pa

)h

eq

Step 4: Compute the elastic strain increments.

(4.1) Calculate E:

E = Mpa

[(
I1

pa

)2

+ 6
1 + ν

1 − 2ν

(
J ′

2

p2
a

)]λ

(4.2) Calculate the stress increments dσ1, dσ2, and dσ3:

dσ1 = σ
(i)
1 − σ

(i−1)
1
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dσ2 = σ
(i)
2 − σ

(i−1)
2

dσ3 = σ
(i)
3 − σ

(i−1)
3 ,

where (i) is the current step and (i − 1) is the preceding step.
(4.3) Calculate dε1, dε2, and dε3 using Hooke’s law:

dεe
1 = dσ1 − νe(dσ2 − dσ3)

E
× 100

dεe
2 = dσ2 − νe(dσ1 − dσ3)

E
× 100

dεe
3 = dσ3 − νe(dσ1 − dσ2)

E
× 100

Note that dσ2 = dσ3 = 0 in a triaxial test (σ2 and σ3 are kept constant!).

Step 5: Compute the plastic strain increments in the hardening regime.

(5.1) df ′
p = f

′(i)
p − f

′(i−1)
p where (i) is the current step

and (i − 1) is the preceding step.

(5.2) Wp = D × (f ′
p)ρ

(5.3) dWp = W
(i)
p − W

(i−1)
p , where (i) is the current step

and (i − 1) is the preceding step.

(5.4) gp =
(

ψ1
I 3

1

I3
− I 2

1

I2
+ ψ2

)(
I1

pa

)µ

(5.5) dλp = dWp

µgp

(5.6) G = ψ1(µ + 3)
I 2

1

I3
− (µ + 2)

I1

I2
+ µ

I1
ψ2

(5.7)




dgp

dσx

dgp

dσy

dgp

dσz

dgp

dσyz

dgp

dσxz

dgp

dσxy




=
(

I1

pa

)µ




G − (σy + σz)
I 2

1

I 2
2

− ψ1(σyσz − τ2
yz)

I 3
1

I 2
3

G − (σz + σx)
I 2

1

I 2
2

− ψ1(σzσx − τ2
zx)

I 3
1

I 2
3

G − (σx + σy)
I 2

1

I 2
2

− ψ1(σxσy − τ2
xy)

I 3
1

I 2
3

2
I 2

1

I 2
2

τyz − 2ψ1(τxyτzx + σxτyz)
I 3

1

I 2
3

2
I 2

1

I 2
2

τzx − 2ψ1(τxyτyz + σyτzx)
I 3

1

I 2
3

2
I 2

1

I 2
2

τxy − 2ψ1(τyzτzx + σzτxy)
I 3

1

I 2
3
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(5.8) d(ε)p = dλp

dgp

d(σ)

Step 6: Calculate plastic strain increments in the softening regime:

(6.1) slope =
(

1

D

) 1
ρ
(

1

ρ

)
(Wp(max))

(1/ρ)−1

(6.2) B = slope

fp(max)

(6.3) A = fp(max) exp(BWp(max))

(6.4) Wp = ln(A) − ln(f
′
p)

B

After calculating Wp in the softening regime, repeat steps (5.3) through (5.8) to
finish computing the plastic strain increments.

Step 7: Calculate the total strains (cumulative).

(7.1) ε1 =
n∑

i=1

(dεe
1)i +

n∑
i=1

(dε
p

1 )i

where n is the total number of strain increments

(7.2) ε2 =
n∑

i=1

(dεe
2)i +

n∑
i=1

(dε
p

2 )i

(7.3) ε3 =
n∑

i=1

(dεe
3)i +

n∑
i=1

(dε
p

3 )i

(7.4) εv = ε1 + ε2 + ε3

Example 2.4 : Back-Calculation of CD Triaxial Test Results Using Lade’s Model
Use Lade’s model parameters for the dense silty sand obtained in Example 2.3
(Table 2.5) along with the spreadsheet described above to back-calculate the
stress–strain behavior of the soil under CD triaxial conditions.

SOLUTION: You can establish your own spreadsheet (recommended) or use the
one provided (file: Example2.4.spreadsheet) to calculate the stress–strain behavior
of the soil under a given confining pressure. The spreadsheet provided automati-
cally increases the stress level in small steps until reaching the peak. Thereafter, the
stress level is decreased automatically to calculate the postpeak response. The cal-
culation procedure is repeated for each confining pressure. Figure 2.42 presents the
soil’s triaxial behavior under three confining pressures. The calculated stress–strain
behavior is also compared with the experimental data. Good agreement is noted
in the figure. Of particular interest is the dilative behavior in the volumetric strain
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FIGURE 2.42 Predicted (Lade’s model) and measured CD triaxial test results of a silty
clay.

versus axial strain plane where the results calculated (Lade’s model) captured the
important dilation phenomenon.

PROBLEMS

2.1 The at-failure results of several CD and CU triaxial tests of a silty sand are
presented in the p′–q plane shown in Figure 2.43. The results of an isotropic
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FIGURE 2.44 e–log p′ curve for a silty sand.

compression test performed on the same soil are shown in Figure 2.44. Esti-
mate the Cam clay model parameters M , λ, and κ. Note that you can obtain
the compression and swelling indexes from Figure 2.44 (not λ and κ).

2.2 Using the Cam clay spreadsheet and model parameters for the silty sand
(Problem 2.1), predict the consolidated drained triaxial behavior of this soil
when subjected to a confining pressure of 70 kPa. Note that the initial void
ratio corresponding to this confining pressure is 0.34 (Figure 2.44).

2.3 Repeat Problem 2.2 for consolidated undrained triaxial test conditions.
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2.4 The at-failure results of several CD and CU triaxial tests of a silty sand are
presented in the p′–t plane shown in Figure 2.43. The results of an isotropic
compression test performed on the same soil are shown in Figure 2.44. (a)
Calculate the soil’s angle of friction β and cohesion d in the p′–t plane for the
cap model. (b) Using the results of the isotropic compression test performed
on the same soil (Figure 2.44), calculate the hardening curve assuming the
initial conditions p′

0 = 70 kPa and e0 = 0.34.

2.5 The results of four consolidated drained triaxial tests and one isotropic com-
pression test on loose Sacramento River sand are shown in Figures 2.45

0 4 8 12 16 20
1

2

3

4

ε1 (%)

ε1 (%)

ε v
 (

%
)

12.65 kg/cm2

12.65 kg/cm2

σ3 = 0.94 kg/cm2

σ3 = 0.94 kg/cm2

4.5 kg/cm2

4.5 kg/cm2

2 kg/cm2

2 kg/cm2

0 4 8 12 16 20

−2

−1

0

1

2

3

4

5

6

σ 1
/σ

3

FIGURE 2.45 Stress–strain behavior of loose Sacramento River sand. (Adapted from
Lade, 1977.)
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FIGURE 2.46 Isotropic compression behavior of loose Sacramento River sand. (Adapted
from Lade, 1977.)

and 2.46, respectively. Estimate Lade’s model parameters following the pro-
cedure discussed in Chapter 2.

2.6 Using Lade’s model spreadsheet and Lade’s model parameters obtained
in Problem 2.5, predict the consolidated drained triaxial behavior of a
loose Sacramento River sand specimen subjected to a confining pressure of
2 kg/cm2.

2.7 From the results of the consolidated drained triaxial tests and the isotropic
compression test on loose Sacramento River sand shown in Figures 2.45
and 2.46, respectively, estimate the Cam clay model parameters.

2.8 Using the Cam clay model spreadsheet and model parameters obtained
in Problem 2.7, predict the consolidated drained triaxial behavior of a
loose Sacramento River sand specimen subjected to a confining pressure of
2 kg/cm2.

2.9 Obtain the cap model parameters using the results of the consolidated drained
triaxial tests and the isotropic compression test on loose Sacramento River
sand shown in Figures 2.45 and 2.46, respectively.



CHAPTER 3

STRESSES IN SOIL

3.1 INTRODUCTION

Accurate estimate of stress distribution in a soil mass is essential for calculations of
elastic and consolidation settlements, of the bearing capacity of soil for shallow and
deep foundations design, of lateral earth pressures for the design of earth-retaining
structures, and of slope stability. In this chapter we show how to calculate in situ
soil stresses and the additional soil stresses caused by external loads.

The in situ vertical stresses are the existing stresses in soil strata due to self-
weight. The vertical stress at a point located at a depth z below the ground surface
is equal to the weight of the soil above that point. When water is present within the
soil strata, we need to distinguish between the total vertical stress and the effective
vertical stress (Figure 3.1a). The concept of effective stress is presented in this
chapter.

The stress increase within a soil mass caused by various types of external loading
can be calculated based on the theory of elasticity. This stress increase is in excess
of the in situ stress and has to be calculated separately (Figure 3.1b). Solutions for
various types of loading are also presented in this chapter.

3.2 IN SITU SOIL STRESSES

In this chapter we assume that a soil located under the groundwater table is fully
saturated [i.e., all voids between the soil grains are filled with water (no air)]. Also,
we assume that the soil above the groundwater table is dry. When a total stress

90
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FIGURE 3.1 Stresses in a semi-infinite soil mass: (a) in situ vertical stresses; (b) stress
increase due to external loads.

(σ) is applied to a saturated soil, it is carried by the water in the pores as well
as the soil grains, as indicated in Figure 3.2. The stress carried by soil grains is
called effective stress and given the symbol σ′. The stress carried by the water in
the pores is termed pore water pressure and given the symbol u.

Define the effective stress (Figure 3.2) as:

σ′ = F1 + F2 + F3 + F4

A
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σ′ = (F1 + F2 + F3 + F4)/A

u
u u u

u u u u

F1 F4F3F2

F1 F2 F3 F4

Section I I

Area = A

a4a3a2
a1

σ

σ

FIGURE 3.2 Definition of effective stress.

where F1, F2, F3, and F4 are the vertical components of the contact forces between
the soil grains and section I–I, and A is the total cross-sectional area of the soil
sample. From force equilibrium at Section I–I we can write

σA = σ′A + u[A − (a1 + a2 + a3 + a4)]

where, the sum of a1, a2, a3, and a4 is the contact area between the soil grains and
section I–I. This contact area is very small compared to the total area A:

a1 + a2 + a3 + a4 ≈ 0

Therefore,

σA = σ′A + uA

or

σ = σ′ + u (3.1)

This means that the effective stress can be calculated at any point below the ground
surface by subtracting the pore water pressure from the total pressure at that point
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(i.e., σ′ = σ − u). Note that the strength and compressibility of the soil depend
on the effective stresses that exist within the soil grains—this is the essence of
the effective stress principle that was formulated by Terzaghi (1936). The prin-
ciple of effective stress is of fundamental importance in soil mechanics because
soil behavior is governed by it. In this chapter we discuss only vertical in situ
stresses. Horizontal stresses can be calculated as a fraction of the vertical stresses,
as discussed in Chapter 7.

3.2.1 No-Seepage Condition

Let’s consider the case of a homogeneous soil layer in a container, as shown in
Figure 3.3. The thickness of the soil layer is H2. Above the soil there is a layer of
water H1 thick. There is another reservoir that can be used to create an upward flow
(upward seepage) through the soil sample. In this present discussion we assume that
the valve leading to the upper reservoir is closed; thus, there is no water flowing
through the soil sample. This is the case of no seepage.

First we calculate the total stress at various depths: z = 0 (top of the water layer),
z = H1 (top of the soil layer), and z = H1 + H2 (bottom of the soil layer). Then
we calculate the pore water pressures at the same depths. Finally, we subtract the
pore water pressure from the total stress to calculate the effective stress. The details
of the calculations are shown. The stresses calculated are plotted in Figure 3.3 and
connected with straight lines, since the stress distribution is a linear function of the
depth z.

Valve
(closed)

No Flow

Soil, γsat

u = 0

u = (H1 + H2)γwσ = H1γw + H2γsat

σ = H1γw

u

σ′ = H2 (γsat − γw)

σ = 0

σ = 0

H1

H2

u = H1γw

Water, γw
z

σ = 0

σ − = σ′

FIGURE 3.3 Calculation of effective stress distribution in a saturated soil layer inside a
container (no-flow condition).
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z Total Stress, σ Pore Water Pressure, u Effective Stress, σ′

0 0 0 0
H1 H1γw H1γw 0
H1 + H2 H1γw + H2γsat (H1 + H2)γw H2(γsat − γw) = H2γ

′

Note: γ′ is the effective unit weight of the saturated soil (γ′ = γsat − γw).

When the soil is dry, the pore water pressure is nonexistent and the effective
stress is equal to the total stress. Figure 3.4a shows a homogeneous soil layer that
has a dry unit weight γd and a thickness H . The groundwater table is deep and
has no effect on the stress distribution in the soil; therefore, the soil layer can be
assumed dry. The total and effective stress distributions are identical. They both
start with a zero stress at z = 0 and increase linearly to a stress value of Hγd at
z = H , as shown in Figure 3.4b.

Let us consider a homogeneous soil layer with a saturated unit weight γsat and
a thickness H as shown in Figure 3.5a. The groundwater table is coincident with
the ground surface. In this case the total stresses increases from zero at the ground

Water Table (deep) 

Unit Weight: γd
H

(a)

σ = σ′ = Hγd

(b)

z

0

FIGURE 3.4 Effective stress distribution in a dry soil (deep water table).

Water Table 

γsatγγH

(a) (b)

σ = Hγsatγγ u = Hγwγγ σ′ = H(γsatγγ − γwγγ )

− =σ σ′u

00 0

z

FIGURE 3.5 Effective stress distribution in a saturated soil (high water table).
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H2HH

(a)

σ = H1γdγγ + H2HH γsatγγ

− =σ σ′

σ′ = H1γdγγ + H2HH (γsatγγ − γwγγ )

σ′ = H1 γdγγ

σ′ = 0σ = 0

σ = HH1γγdγγ

u = H2HH γwγγ

(b)

u

u = 0

z

FIGURE 3.6 Effective stress distribution in a partially submerged soil layer.

surface to Hγsat at the bottom of the soil layer, as shown in Figure 3.5b. The pore
water pressure also increases linearly with depth: from u = 0 at z = 0 to u = Hγw

at z = H . The effective stress is calculated by subtracting the pore water pressure
from the total stress: σ′ = 0 at z = 0 to σ′ = Hγ′ at z = H with a linear variation
in between as indicated in Figure 3.5b.

When the water table is located below the surface of a homogeneous soil layer,
as shown in Figure 3.6a, we can assume that the soil above the water table is dry
and the soil below the water table is fully saturated. The effective stress calculations
are summarized below. The stress profiles are shown in Figure 3.6b.

z Total Stress, σ Pore Water Pressure, u Effective Stress, σ′

0 0 0 0
H1 H1γd 0 H1γd

H1 + H2 H1γd + H2γsat H2γw H1γd + H2γ
′

Note: γ′ is the effective unit weight of the saturated soil (γ′ = γsat − γw).

Example 3.1 Plot the total stress, pore water pressure, and the effective stress
distributions for the 4.5-m-thick soil layer shown in Figure 3.7a. The water table
is located 1.5 m below the ground surface. The soil has a dry unit weight of
17 kN/m3 and a saturated unit weight of 19 kN/m3.

SOLUTION: The following is a detailed calculation of the stresses at z = 0, 1.5,
and 4.5 m. The profiles calculated are shown in Figure 3.7b.

Z (m) σ (kPa) u (kPa) σ′ (kPa)

0 0 0 0
1.5 (1.5)(17) = 25.5 0 25.5 − 0 = 25.5
4.5 25.5 + (3)(19) = 82.5 (3)(9.81) = 29.43 82.5 − 29.43 = 53.07
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00
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FIGURE 3.7 Soil profile for Example 3.1.

Example 3.2 Consider the homogeneous soil layer shown in Figure 3.8. In the
winter, the water table is located at a distance H1 below the ground surface, as
shown in Figure 3.8a. In the spring, the water table rises a distance h above the
winter level due to snow thaw (Figure 3.8b). Calculate the change in effective
stress at the bottom of the soil layer from winter to spring. The soil has a dry unit
weight of γd and a saturated unit weight of γsat.

SOLUTION: For winter conditions (Figure 3.8a), the effective stress at the bottom
of the soil layer is

σ′
winter = H1γd + H2γ

′

For spring conditions (Figure 3.8b), the effective stress at the bottom of the soil
layer is

σ′
spring = (H1 − h)γd + (H2 + h)γ′ = H1γd + H2γ

′ − h(γd − γ′)

GWT

GWT

Initial GWT Level

Final GWT Level

H1

H2

H2 + h

H1 − h

h

γd

γd

γsat

γsat

(a) (b)

FIGURE 3.8 Effects of water table variation.
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or

σ′
spring = σ′

winter − h(γd − γ′)

Therefore,

�σ′ = σ′
winter − σ′

spring = h(γd − γ′)

3.2.2 Upward-Seepage Conditions

Upward-seepage conditions can be induced in the laboratory using constant-head
permeability test apparatus, as shown in Figure 3.9a. The upper reservoir causes
the water to flow upward through the soil sample. If the hydraulic gradient is large
enough (i = icr), the upward-seepage force will cause the effective stress within
the soil to become zero, thus causing a sudden loss of soil strength in accordance
with the effective-stress principle. This condition resembles that of the exit soil
element on the downstream side of the sheet pile shown in Figure 3.10. If the
hydraulic gradient in the exit element is large (iexit = icr), the exit element becomes
unstable—the upward-seepage force is large enough to cause the exit element to
“float.”

Valve
(opened)

Flow
Direction

Soil, γsat

u = 0σ = 0 σ' = 0

σ' = 0

u = (h + H1 + H2)γwσ =H1γw + H2γsat

u

σ' = H2(γsat − γw) − hγw

H1

H2

σ = H1γw u = H1γw

Water, γw

h

Flow Direction

z

(a) (b)

σ σ'− =

FIGURE 3.9 Calculation of effective stress distribution in a saturated soil layer inside a
container (upward-flow condition).
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FIGURE 3.10 Safety of the exit element in a sheet pile problem.

Let’s calculate the effective-stress profile of the soil sample shown in
Figure 3.9a. This is done by calculating the total stresses and the pore water pres-
sures at various depths and then subtracting the pore water pressures from the total
stresses as follows:

z Total Stress, σ Pore Water Pressure u Effective Stress, σ′

0 0 0 0
H1 H1γw H1γw 0
H1 + H2 H1γw + H2γsat (h + H1 + H2)γw H2γ

′ − hγw

The triangular effective-stress profile along the depth of the soil specimen is shown
in Figure 3.9b. The soil specimen will be totally destabilized when the effective-
stress distribution becomes zero. We can obtain this condition if we set the effective
stress at the bottom of the soil layer equal to zero:

H2γ
′ − hγw = 0 (3.2)

or

h

H2
= γ′

γw

(3.3)

As you recall, the hydraulic gradient through the soil specimen is given by

i = icr = h

H2
(3.4)
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where the hydraulic gradient, i, is equal to the critical hydraulic gradient, icr,
because it causes the soil specimen to be destabilized. Substituting (3.3) into
(3.4) yields

icr = γ′

γw

(3.5)

Now we can discuss the exit element on the downstream side of the sheet pile
shown in Figure 3.10. The flow net indicates that the exit element is subject to a
total head loss of 1 m (= h6 − h7). As the water flows from the bottom of the exit
element toward the top, a distance L of approximately 4.5 m, it encounters a head
loss of 1 m. Therefore, the exit hydraulic gradient can be calculated as

iexit = h6 − h7

L
= �h

L
(3.6)

Let us define a hydraulic gradient safety factor for the exit element:

FS = icr

iexit
(3.7)

When this safety factor is 1, the exit hydraulic gradient is equal to the critical
hydraulic gradient, and the exit element is in the state of incipient failure. To
prevent that, this safety factor should be equal to or greater than 1.5.

Is the exit element in Figure 3.10 safe? To answer that we need to calculate its
safety factor as follows:

FS = icr

iexit
= γ′/γw

�h/L
= γ′

γw

L

�h
(3.8)

Assuming that the sand has γsat = 19 kN/m3, then

FS =
(

19 − 9.81

9.81

)(
4.5

1

)
= 4.2 > 1.5

and the exit element is safe.

3.2.3 Capillary Rise

Soil pores are interconnected and they form a net of irregular tiny tubes. Due to the
capillary phenomenon, water will rise above the water table through these tubes,
forming a partially saturated zone of capillary rise. The height, hw , above the water
table to which the soil is partially saturated is called the capillary rise. This height
is dependent on the grain size and soil type. In coarse soils capillary rise is very
small, but in clays it can be over 10 m.
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The pore pressure below the water table is considered positive and increases
linearly with depth as discussed earlier. Above the water table, however, pore
water pressure is negative (suction) and increases linearly, in absolute value, with
the height above the water table, thus, at the water table level, u = 0; and at a
distance hw above the water table, u ≈ −(S%/100)γwhw , where S is the degree
of saturation of the soil in the zone of capillary rise.

The soil within the zone of capillary rise becomes substantially stronger because
of the negative pore water pressure. Negative pore water pressure causes an increase
in the effective stress: σ′ = σ − (−u) = σ + u, hence the increase in strength. This
is a direct consequence of the principle of effective stress. This capillary rise is the
reason why we can build a sandcastle using moist sand (try building one with dry
or very wet sand!).

Example 3.3 A 3.5-m-thick silt layer underlain by a 3-m-thick clay layer is shown
in Figure 3.11a. Calculate the total stress, pore water pressure, and effective stress
at points A, B, C, D, and E. The water table is located 2.5 m below the ground

Water
Table

u = 0σ = 0

(a) (b)

u σ′σ − =

Silt
Gs = 2.7

Gs = 2.7
e = 0.6
S = 60%

Gs = 2.7

Gs = 2.69

e = 0.6

e = 0.6

e = 0.807

S = 0%

S = 100%

S = 100%

Silt
Capillary
Zone

Silt

Clay

1.5 m

3 m

1 m

1 m

16.55 kPa

121.89 kPa

64.95 kPa

44.75 kPa

−8.8 kPa

39.24 kPa

9.81 kPa

0 kPa

82.65 kPa

55.14 kPa

44.75 kPa

25.35 kPa

16.55 kPa

E

B

D

C

A

z

σ′ = 0

FIGURE 3.11 Soil profile for Example 3.3.
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surface. The capillary rise in the silt layer is 1.5 m. Assume that the silt layer has
a degree of saturation S = 60% in the zone of capillary rise.

SOLUTION: To calculate the in situ stresses, we need to estimate the unit weight
of each soil layer. The dry unit weight of the top silt layer is

γd = Gsγw

1 + e
= (2.7)(9.81)

1 + 0.6
= 16.55 kN/m3

The moist unit weight of the silt in the zone of capillary rise is

γ = (Gs + Se)γw

1 + e
= [2.7 + (0.6)(0.6)](9.81)

1 + 0.6
= 18.8 kN/m3

The saturated unit weight of the silt layer below the water table is

γsat = (Gs + e)γw

1 + e
= (2.7 + 0.6)(9.81)

1 + 0.6
= 20.2 kN/m3

The saturated unit weight of the clay layer is

γsat = (Gs + e)γw

1 + e
= (2.69 + 0.807)(9.81)

1 + 0.807
= 18.98 kN/m3

Table 3.1 is a detailed calculation of the stresses at points A, B, C, D, and E (at
z = 0, 1, 2.5, 3.5, and 6.5 m, respectively). The profiles calculated are shown in
Figure 3.11b.

TABLE 3.1

Point Z (m) σ (kPa) u, kPa σ′ (kPa)

A 0 0 0 0
Babove 0.999 (1)(16.55) = 16.55 0 16.55 − 0 = 16.55
Bbelow 1.001 (1)(16.55) = 16.55 (−0.6)(1.5)(9.81) = −8.8 16.55 − (−8.8) = 25.35
C 2.5 16.55+(1.5)(18.8) = 44.75 0 44.75 − 0 = 44.75
D 3.5 44.75+(1)(20.2) = 64.95 (1)(9.81) = 9.81 64.96 − 9.81 = 55.14
E 6.5 64.95+(3)(18.98) = 121.89 (4)(9.81) = 39.24 121.89 − 39.24 = 82.65

3.3 STRESS INCREASE IN A SEMI-INFINITE SOIL MASS CAUSED BY
EXTERNAL LOADING

The stress increase within a soil mass caused by various types of external loading
can be calculated based on the theory of elasticity. This stress increase is in excess
of the in situ stress and has to be calculated separately. Solutions for various types
of loading are presented next.
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FIGURE 3.12 Vertical stresses caused by a point load.

3.3.1 Stresses Caused by a Point Load (Boussinesq Solution)

A point load is a concentrated load that can be applied at the surface of a semi-
infinite soil mass as indicated in Figure 3.12. Boussinesq (1883) presented solutions
for stresses within a semi-infinite soil mass subjected to a vertical point load applied
at the surface. A semi-infinite soil mass is defined as an infinitely thick layer (in
the z-direction) that is bounded by a horizontal plane at the top (x–y plane in
Figure 3.12). A Boussinesq solution for a point load assumes that the soil mass
is semi-infinite, homogeneous, linearly elastic, and isotropic. For the case of a
vertical point load P applied at the origin of the coordinate system (Figure 3.12),
the vertical stress increase at any point (x,y,z) within the semi-infinite soil mass is
given by

�σz = 3P

2π

z3

(x2 + y2 + z2)5/2
(3.9)

where P is the intensity of the point load given in force units and x, y, and z are
the coordinates of the point at which the increase of vertical stress is calculated.

Example 3.4 A vertical point load of 10 kN is applied at the surface of a semi-
infinite soil mass. (a) Regarding the point of load application as the origin of the
Cartesian coordinate system, calculate the increase of vertical stress directly under
the applied load (i.e., at x = 0 and y = 0) for z = 0 to 1 m. Also calculate the
increase in vertical stresses at x = 0.1 m, y = 0 m, for z = 0 to 1 m. (b) Repeat
your solution using the finite element method and assuming that the soil is linear
elastic with E = 1 × 107 kPa and ν = 0.3.
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SOLUTION: (a) Boussinesq solution To calculate the increase in vertical stress
directly under the applied load for z = 0 to 1 m, we substitute x = 0 and y = 0
into (3.9):

�σz = 3P

2π

1

z2

Using this equation, we can calculate the increase in vertical stress as a function
of z. The equation is plotted in Figure 3.13. According to this equation, �σz is
linearly proportional to the intensity of the point load and inversely proportional
to z2. This means that �σz is very large near the point of load application but
decreases very rapidly with depth as shown in Figure 3.13.

To calculate the increase in vertical stresses at x = 0.1 m, y = 0 m, for z = 0 to
1 m, we substitute these values in (3.9). The resulting increase in vertical stress is
plotted as a function of depth in Figure 3.13. Note that near the surface the increase
in vertical stress at x = 0.1 m and y = 0 m is much smaller than that immediately
under the applied load (i.e., x = 0 m, y = 0 m). But at greater depths (z > 0.4 m)
the increase in vertical stress is nearly identical at both locations.

(b) Finite element solution (filename: Chapter3 Example4.cae) For simplicity,
the semi-infinite soil mass is assumed to be a cylinder 2 m in diameter and 2 m
in height, as shown in Figure 3.14. The reason of using a cylindrical shape in this
simulation is to take advantage of axisymmetry, in which we can utilize axisym-
metric two-dimensional analysis instead of three-dimensional analysis. The load is
applied to the top surface at the center as shown in the figure. The purpose of the
analysis is to calculate the increase in vertical stress within the soil mass due to the
application of the point load, and to compare with Boussinesq analytical solution.
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FIGURE 3.13 FEM versus Boussinesq solution of vertical stresses caused by a point load.
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FIGURE 3.14 Axisymmetric finite element mesh of the point load problem.

The two-dimensional axisymmetric finite element mesh used has 20 elements
in the x-direction and 40 elements in the z-direction, as shown in Figure 3.14. The
finite element mesh is made finer in the zone around the point load where stress
concentration is expected. The element chosen is a four-node bilinear axisymmetric
quadrilateral element. The soil is assumed to be linear elastic with E = 1 × 107 kPa
and ν = 0.3. The increase in vertical stress is plotted as a function of depth as shown
in Figure 3.13 for x = 0 m, y = 0 m and x = 0.1 m, y = 0 m. The figure shows
excellent agreement between the stresses calculated using the Boussinesq and finite
element solutions.

3.3.2 Stresses Caused by a Line Load

A line load can be thought of as a point load that is applied repeatedly, in a
uniform manner, along the y-axis as illustrated in Figure 3.15. The line load is
applied infinitely along the y-axis. The units of a line load are given as force per
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FIGURE 3.15 Stresses caused by a line load.

unit length, such as kN/m. Due to the nature of line load, the resulting stresses
in the x–z plane are independent of y (i.e., we will get the same stresses in any
x–z plane as we travel along the y-axis). This type of loading–geometry is termed
plane strain. The vertical stress increase at any point (x,z) is given as

�σz = 2qz3

π(x2 + z2)2
(3.10)

where q is the line load (force/unit length) and x and z are the coordinates at which
the stress increase is calculated.

Example 3.5 A vertical line load of 10 kN/m is applied at the surface of a semi-
infinite soil mass. (a) Calculate the increase in vertical stress directly under the
applied load for z = 0 to 0.3 m. (b) Repeat your solution using the finite element
method and assuming that the soil is linear elastic with E = 1 × 107 kPa and
ν = 0.3.

SOLUTION: (a) To calculate the increase in vertical stress directly under the
applied load for z = 0 to 0.3 m, we substitute x = 0 into (3.10):

�σz = 2q

πz

Using this equation, we can calculate the increase in vertical stress as a function
of z. The equation is plotted in Figure 3.16. According to this equation, �σz is
linearly proportional to the intensity of the line load and inversely proportional to z.
This means that �σz is very large near the point of load application but decreases
rapidly with depth, as shown in Figure 3.16.

(b) Finite element solution (filename: Chapter3 Example5.cae) A plane strain
condition is assumed in which the semi-infinite soil mass is represented by a 1 m ×
2 m (x–z) plane as shown in Figure 3.17. The purpose of the analysis is to calculate
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FIGURE 3.16 Stresses caused by a line load: FEM compared with the analytical solution.
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FIGURE 3.17 Plane strain finite element mesh of the line load problem.
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the increase in vertical stress within the soil mass due to use of the line load and
to compare with the analytical solution presented in part (a).

The two-dimensional plane strain finite element mesh used has 20 elements in
the x-direction and 40 elements in the z-direction, as shown in Figure 3.17. The
finite element mesh is made finer in the zone around the line load, where stress
concentration is expected. The element chosen is a four–node bilinear plane strain
quadrilateral element. The increase in vertical stress is plotted as a function of
depth, as shown in Figure 3.16 for x = 0 m. The figure shows excellent agreement
between the stresses calculated using the analytical solution (3.10) and the finite
element solution.

Example 3.6 Two parallel line loads, 10 kN/m each, are applied at the surface
of a semi-infinite soil mass as shown in Figure 3.18a. This type of loading can
be thought as a load caused by the rails of a train while the train is standing
still. (a) Calculate the increase in vertical stress directly above the crown of the
underground tunnel located in the vicinity of the railroad, as shown in Figure 3.18a.
(b) Repeat your solution using the finite element method and assuming that the soil
is linear elastic with E = 1 × 107 kPa and ν = 0.3.

SOLUTION: (a) To calculate the total increase in vertical stress at the crown of the
tunnel due to the line loads q1 and q2, we can calculate the stress increase caused
by each line load separately and then combine the two. Called superimposition,
this is permitted only when the loaded medium is linear elastic, which is the case
in the present problem.

With the assistance of Figure 3.18b we can calculate (�σz)1, which is caused
by q1. For that we substitute x = 0.51 m and z = 0.272 m into (3.10):

(�σz)1 = (2)(10)(0.272)3

π(0.512 + 0.2722)2
= 1.148 kPa

Also, with the help of Figure 3.18c we can calculate (�σz)2, which is caused by
q2. Substitute x = 1.49 m and z = 0.272 m into (3.10):

(�σz)2 = (2)(10)(0.272)3

π(1.492 + 0.2722)2
= 0.024 kPa

Therefore,

�σz = (�σz)1 + (�σz)2 = 1.148 + 0.024 = 1.172 kPa

Note that the stress increase caused by q1 at the crown of the tunnel is much greater
than that caused by q2. This is because q1 is closer than q2 to the tunnel.

(b) Finite element solution (filename: Chapter3 Example6.cae) A plane strain
condition is assumed in which the semi-infinite soil mass is represented by a
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FIGURE 3.18 Two-parallel-line-loads problem.

2.8 m × 3.4 m (x–z) plane as shown in Figure 3.19. The purpose of the analy-
sis is to calculate the increase of vertical stress at the crown of the tunnel due to
the application of the two line loads and to compare with the analytical solution
presented in part (a).

The two-dimensional plane strain finite element mesh used for this analysis has
22 elements in the x-direction and 50 elements in the z-direction, as shown in
Figure 3.19. The element chosen is a four-node bilinear plane strain quadrilateral
element. The underground tunnel is not modeled in this simplified analysis. For
more elaborate analysis, the underground tunnel can be modeled as a cavity. The
presence of an underground cavity will affect the stress distribution, especially
around the tunnel.
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FIGURE 3.19 Finite element mesh of the two-parallel-line-loads problem.

The calculated increase in vertical stress at the crown of the tunnel is 1.188 kPa.
This is in excellent agreement with the stress increase of 1.172 kPa calculated using
the analytical solution (3.10).

3.3.3 Stresses Under the Center of a Uniformly Loaded Circular Area

For a uniformly loaded circular area (Figure 3.20), the stress increase under the
center of the loaded area at any depth z is given by

�σz = q

{
1 − 1

[(R/z)2 + 1]3/2

}
(3.11)

where q (force/unit area) is the applied pressure, R the radius of the loaded circle,
and z the depth below the center of the loaded circle at which the stress increase is
calculated. The elastic solution for stress increase elsewhere within the semi-infinite
soil mass (not under the center) may be found in Ahlvin and Ulery (1962).
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FIGURE 3.20 Stresses under the center of a uniformly loaded circular area.

Example 3.7 A pressure of 10 kPa is uniformly distributed on a circular area with
R = 0.5 m. (a) Calculate the increase in vertical stress directly under the center of
the applied load for z = 0 to 5 m. (b) Repeat your solution using the finite element
method and assuming that the soil is linear elastic with E = 1 × 107 kPa and
ν = 0.3.

SOLUTION: (a) For the increase in vertical stress directly under the center of the
applied load for z = 0 to 5 m, we use (3.11):

�σz = (10)

{
1 − 1

[(0.5/z)2 + 1]3/2

}

Using this equation, we can calculate the increase in vertical stress as a function
of z. The equation is plotted in Figure 3.21. Note that �σz is large (10 kPa) near
the surface but decreases very rapidly with depth.

(b) Finite element solution (filename: Chapter3 Example7.cae) For simplicity,
the semi-infinite soil mass is assumed to be a cylinder 100 m in diameter and
50 m in height, as shown in Figure 3.22. The reason for using a cylindrical shape
in this simulation is to take advantage of axisymmetry, in which we can utilize
axisymmetric two-dimensional analysis instead of three-dimensional analysis. The
10-kPa pressure is applied at the top surface on a circular area with 0.5-m radius.
The purpose of the analysis is to calculate the increase in vertical stress within the
soil mass due to the application of the 10-kPa pressure, and to compare with the
analytical solution.

The two-dimensional axisymmetric finite element mesh used has 20 elements
in the x-direction and 40 elements in the z-direction, as shown in Figure 3.22.
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FIGURE 3.21 Comparison between FEM and analytical solution of the stresses under the
center of a uniformly loaded circular area.

The finite element mesh is made finer in the zone around the pressurized circle
where stress concentration is expected. The element chosen is a four-node bilinear
axisymmetric quadrilateral element. The increase in vertical stress under the center
of the pressurized circle is plotted as a function of depth as shown in Figure 3.21.
The figure shows excellent agreement between the stresses calculated using the
analytical elastic solution and the finite element solution. Note that the finite element
solution is not limited to finding the stresses under the center of the loaded circle.
It provides stresses, strains, and displacements at all nodal points within the loaded
semi-infinite soil mass as well.

Vertical Stress Increase in a Layered Soil System The equations pre-
sented above for point load (3.9), line load (3.10), and circularly loaded area (3.11)
are based on the assumption that the underlying soil is homogeneous and infinitely
thick. These equations are invalid for a soil system having several layers with vary-
ing elastic moduli (i.e., nonhomogeneous), such as the one shown in Figure 3.23.
More complicated solutions based on the theory of elasticity are required for such
cases. The following example is about a soil system with four different layers that
resembles the structure of a highway pavement: an asphalt layer (top), a base layer,
a subbase layer, and the existing soil (bottom). An analytical solution is not avail-
able for such a system. Thus, the finite element method can be extremely helpful
for such a system.
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FIGURE 3.22 Axisymmetric finite element mesh of the loaded circular area problem.

Example 3.8 Consider a system with four layers of varying stiffness and thick-
ness as shown in Figure 3.23. A pressure of 10 kPa is uniformly distributed on
a circular area with R = 0.5 m. Using the finite element method, calculate the
increase in vertical stress directly under the center of the circular area for z = 0 to
5 m. Compare this stress increase with that obtained in Example 3.7 for a single
homogeneous soil layer.

SOLUTION: Finite element solution (filename: Chapter3 Example8.cae) Similar
to what we did in Example 3.7, we assume that the semi-infinite soil mass is a
cylinder 100 m in diameter and 50 m in height as shown in Figure 3.22. The 10-
kPa pressure is applied at the top surface on a circular area with an 0.5 m radius.
The purpose of the analysis is to calculate the increase in vertical stress within
the stratified soil mass due to the application of a uniformly distributed load on a
circular area, and to compare with the solution for a single homogeneous layer.

The two-dimensional axisymmetric finite element mesh used has 20 elements
in the x-direction and 40 elements in the z-direction, as shown in Figure 3.22. The
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mesh includes four layers with the elastic moduli shown in Figure 3.23. The finite
element mesh is made finer in the zone around the pressurized circle, where stress
concentration is expected. The element chosen is a four-node bilinear axisymmet-
ric quadrilateral element. The increase in vertical stress under the center of the
pressurized circle is plotted as a function of depth as shown in Figure 3.24. For
comparison, the increase in vertical stress in a single homogeneous layer is included
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FIGURE 3.23 Stress increase in a layered soil system with a uniformly loaded circular
area.
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FIGURE 3.24 Comparison between FEM and analytical solution of a layered system with
a uniformly loaded circular area.



114 STRESSES IN SOIL

in the figure (taken from Example 3.7). When the two are compared, the beneficial
effects of the stiff asphalt layer and the base layer are seen clearly. These two
layers absorbed most of the damaging vertical stress increase. Only a small frac-
tion of stress increase is passed on to the subbase and existing softer soil layers.
Thus, the asphalt layer acts as a shield that protects the underlying softer layers
from excessive stress increases due to repeated traffic loads, which usually cause
pavement rutting and cracking.

3.3.4 Stresses Caused by a Strip Load (B/L ≈ 0)

Theoretically, a strip foundation is a rectangle of infinite length L and finite width
B (i.e., B/L ≈ 0). But foundations with L/B > 10 can be regarded as strip foun-
dations. Examples of strip foundations include foundations for long structures such
as retaining walls. A strip load can be thought of as a line load that is applied
repeatedly and uniformly along the y-axis covering a width B as illustrated in
Figure 3.25. This is a plane strain geometry in which the stresses in the x–z plane
are independent of y. The units of a strip load are given as force per unit area,
such as kN/m2.

The vertical stress increase at any point (x,z) is given as:

�σz = q
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(3.12)
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FIGURE 3.25 Stresses caused by a strip load.
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where q is the applied pressure, B the width of the strip load, and x and z the
coordinates of the point at which the stress increase is calculated. Usually, soil
mechanics books and references tabulate �σz as a function of B, x, and z. With
advancements in handheld preprogrammable calculators it became very easy to
program and store equations such as (3.12). Thus, we do not include such tables
in this chapter.

Example 3.9 A 1-m-wide strip load of 10 kN/m2 is applied at the surface of a
semi-infinite soil mass. (a) Using (3.12), calculate the increase in vertical stress
directly under the center of the applied load for z = 0 to 8 m. (b) Repeat your
solution using the finite element method and assuming that the soil is linear elastic
with E = 1 × 107 kPa and ν = 0.3.

SOLUTION: (a) To calculate the increase in vertical stress directly under the strip
load for z = 0 to 8 m, we substitute x = 0.5 m into (3.12), and then vary z from
0 to 8 m and use the equation to calculate the increase in vertical stress at various
depths. The results are plotted in Figure 3.26. Note that the �σz calculated is equal
to the applied pressure (= 10 kPa) at the surface where z is equal to zero. The stress
decreases rapidly with depth, as shown in the figure.

(b) Finite element solution (filename: Chapter3 Example9.cae) A plane strain
condition is assumed. Because of symmetry, only one-half of the width of the strip
load and one-half of the underlying soil are modeled, as shown in Figure 3.27. We
calculate the increase in vertical stress within the soil mass due to the application
of the strip load and compare it with the analytical solution presented above.

0 1 2 3 4 5 6 7 8 9 10

Vertical Stress (kPa)

0

1

2

3

4

5

6

7

8

9

10

D
ep

th
 (

m
)

FEM, x = 0.5 m

Boussinesq, x = 0.5 m

X

Z

q
B

FIGURE 3.26 Stresses caused by a strip load: FEM versus analytical solution.
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FIGURE 3.27 Plane strain finite element mesh of the strip load problem.

The two-dimensional plane strain finite element mesh used has 20 elements in
the x-direction and 40 elements in the z-direction, as shown in Figure 3.27. The
finite element mesh is made finer in the zone around the strip load, where stress
concentration is expected. The element chosen is a four-node bilinear plane strain
quadrilateral element. No mesh convergence studies have been performed. How-
ever, the dimensions of the soil layer are chosen such that the boundary effect on
the solution is minimized. The increase in vertical stress is plotted as a function of
depth as shown in Figure 3.26 for x = 0.5 m. The figure shows excellent agree-
ment between the stresses calculated using the analytical solution (3.12) and the
finite element solution.

3.3.5 Stresses Caused by a Uniformly Loaded Rectangular Area

Squares and rectangles are the most common shapes used in shallow foundations.
The role of a shallow foundation is to spread the column load (from a super-
structure) on a wider area in a uniform manner. Thus, instead of applying the



STRESS INCREASE IN A SEMI-INFINITE SOIL MASS CAUSED BY EXTERNAL LOADING 117

concentrated column load directly to the “weak” soil, the shallow foundation will
apply a much gentler uniform pressure to the soil.

Consider a uniformly loaded rectangular area with length L and width B as
shown in Figure 3.28a. Note that L is always greater than B in a rectangle, and L

is equal to B in a square. The uniform load q is expressed in force per unit area
(pressure units). Equation (3.13) can be used to calculate the increase of vertical
stress under the corner of a loaded rectangle as illustrated in Figure 3.28a.

�σz = q

4π

(
2mn

√
m2 + n2 + 1

m2 + n2 + m2n2 + 1

m2 + n2 + 2

m2 + n2 + 1
+ tan−1 2mn

√
m2 + n2 + 1

m2 + n2 − m2n2 + 1

)

(3.13)

where m = B/z and n = L/z.
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FIGURE 3.28 Stresses caused by a uniformly loaded rectangular area.
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In most practical cases an increase in vertical stress under the center (point A in
Figure 3.28b) of a uniformly loaded rectangular area is required. Remember that
(3.13) is only for the stress increase below the corner of a rectangle. To use (3.13)
to calculate the stress increase under the center of a loaded rectangle, we can divide
the rectangle into four identical “small” rectangles each of which has point A as
its corner. The increase in the vertical stress under the corner A of each small
rectangle can be calculated using (3.13) and assuming that L and B are the length
and width of a small rectangle (see Figure 3.28b). The total increase in vertical
stress is then calculated by adding the four stress increases of the four identical
small rectangles.

Example 3.10 (a) Using (3.13), calculate the increase in vertical stress under the
center of a 4 m × 2 m rectangle that is loaded uniformly with q = 10 kPa. Assume
that the soil layer underlying the loaded area is very thick and linear elastic with
E = 1 × 107 kPa and ν = 0.3. (b) Calculate the increase in vertical stress under
the center using the finite element method. Compare the two answers.

SOLUTION: (a) Since we need to calculate the stress increase under the center
using (3.13), we will have to divide the 4 m × 2 m rectangle into four 2 m × 1 m
small rectangles. Then for the small rectangles we have m = B/z = 1/z and n =
L/z = 2/z. Let’s vary z from 0.01 to 20 m. For each z we calculate m and n

and substitute those into (3.13) to get the stress increase �σz under the corner
of the small rectangles. To calculate the stress increase under the center of the
4 m × 2 m rectangle, multiply �σz by 4 to account for the four identical small
rectangles. The stress increase with depth calculated is listed in Table 3.2 and
plotted in Figure 3.29. Note that near the surface (at z = 0.01 m), �σz is equal
to q(= 10 kPa). The figure also shows that the stress declines very rapidly. At
z = 4B = 8 m, �σz is only 0.56 kPa (i.e., less than 6% of the applied pressure q).

(b) Finite element solution (filename: Chapter3 Example10.cae) This is a
three-dimensional geometry that needs to be treated as such in a finite element
analysis. The three-dimensional model analyzed is shown in Figure 3.30. The soil
layer is 50 m deep and 100 m × 100 m in plan. The loaded area is 4 m × 2 m.
The model considers only one-fourth of the soil layer and the loaded area, taking

TABLE 3.2

z (m) �σz (kPa) z (m) �σz (kPa)

0.01 10.0 6 0.952
1 7.996 8 0.56
2 4.808 10 0.368
3 2.928 15 0.168
4 1.9 20 0.096
5 1.312



STRESS INCREASE IN A SEMI-INFINITE SOIL MASS CAUSED BY EXTERNAL LOADING 119

0 1 2 3 4 5 6 7 8 9 10
Vertical Stress (kPa)

0

2

4

6

8

10

12

14

16

18

20

D
ep

th
 (

m
)

FEM, Center

Boussinesq, Center

X

Y

q (kN/m2)

Z

L
B

FIGURE 3.29 Stresses caused by a uniformly loaded rectangular area: FEM versus ana-
lytical solution.

advantage of symmetry as indicated in Figure 3.30a. The loaded area simulates a
foundation with perfect contact with the soil. Reduced-integration eight-node linear
brick elements are used for the soil layer. The base of the soil layer is fixed in
all directions. All vertical boundaries are fixed in the horizontal direction but free
in the vertical direction. The finite element mesh used in the analysis is shown
in Figure 3.30b. It is noted that the mesh is finer in the vicinity of the foundation
since that zone is a zone of stress concentration. No mesh convergence studies have
been performed. However, the dimensions of the soil layer are chosen such that
the boundary effect on foundation behavior is minimized. The increase in vertical
stress under the center of the rectangular area is plotted as a function of depth in
Figure 3.29. The figure shows excellent agreement between the stresses calculated
using the analytical solution (3.13) and those calculated using the finite element
method.

Note that the finite element analysis presented above provides stresses, strains,
and displacements at all nodal points within the loaded semi-infinite soil mass—the
finite element results are not limited to the stresses under the center of the loaded
rectangle. Also note that this analysis assumes linear elastic soil behavior that is not
suited for failure analysis. The present finite element analysis was carried out only
to calculate the stress increase within the soil. In Chapter 6 we use elastoplastic
soil models to predict the bearing capacity of various types of shallow foundations
in a realistic manner.
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FIGURE 3.30 Finite element discretization of the loaded rectangle problem.
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PROBLEMS

3.1 Plot the vertical stress, pore water pressure, and effective-stress distributions
for the soil strata shown in Figure 3.31. The water table is located 5 m below
the ground surface.

3.2 By the end of the summer, the water table in Problem 3.1 dropped 2 m.
Plot the new distribution of the vertical stress, pore water pressure, and
effective stress for the soil strata knowing that the bulk unit weight of the
clay layer (above the water table) is 18 kN/m3 and its saturated unit weight
is 19.7 kN/m3, as shown in Figure 3.31.

3.3 Refer to Figure 3.8. In the winter, the water table is located at a distance
H1 = 10 m below the ground surface, as shown in Figure 3.8a. In the spring,
the water table rises a distance h = 5 m above the winter level, due to snow
thaw (Figure 3.8b). Calculate the change in effective stress at the bottom
of the soil layer from winter to spring. The soil has a dry unit weight of
γd = 17 kN/m3 and a saturated unit weight of γsat = 18.7 kN/m3.

3.4 A 3.5-m-thick silt layer underlain by a 3-m-thick clay layer is shown in
Figure 3.11a (refer to Example 3.3). Calculate the total stress, pore water
pressure, and effective stress at points A, B, C, D, and E. The water table
is located 2.5 m below the ground surface. Ignore the capillary rise in the
silt layer and assume that the soil above the water table is dry. Compare
the effective stresses at points A, B, C, D, and E with those calculated in
Example 3.3.

3.5 Two vertical point loads of 100 kN each are applied at the surface of a semi-
infinite soil mass. The horizontal distance between the two point loads is
0.5 m. Using a Boussinesq solution, calculate the increase in vertical stress
directly under one of the applied loads at z = 1 m. If you were to solve this
problem using the finite element method, what type of geometry would you
use: axisymmetric, plane strain, or three-dimensional?
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FIGURE 3.31
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FIGURE 3.32

3.6 Two parallel line loads, 100 kN/m each, are applied at the surface of the
backfill soil behind a rigid basement wall as shown in Figure 3.32. This
type of loading can be thought of as the load caused by the rails of a train
while the train is standing still or moving at a constant speed. (a) Calculate
the increase in vertical stress at points A, B, C, D, and E. (b) Repeat your
solution using the finite element method and assuming that the soil is linear
elastic with E = 1 × 107 kPa and ν = 0.3. What is the horizontal stress
increase at points A, B, C, D, and E?

3.7 A pressure of 100 kPa is distributed uniformly on a circular area with R =
2 m. (a) Calculate the increase in vertical stress directly under the center
of the applied load for z = 0 to 12 m. (b) Repeat your solution using the
finite element method and assuming that the soil is linear elastic with E =
1 × 107 kPa and ν = 0.3.

3.8 Consider the three-layer system shown in Figure 3.33. A pressure of 100 kPa
is distributed uniformly on a circular area with R = 2 m. Using the finite ele-
ment method, calculate the increase in vertical stress directly under the center
of the circular area for z = 0 to 12 m. Compare the stress increase at points
A, B, and C with that obtained in Problem 3.7 for a single homogeneous
soil layer.

3.9 A 2-m-wide strip load of 100 kN/m2 is applied at the surface of the backfill
soil behind a rigid basement wall as shown in Figure 3.34. (a) Calculate the
increase in vertical stress directly under the center of the applied load for
z = 0 to 3 m, (b) Calculate the increase in vertical stress at points A, B,
C, D, and E. (c) Repeat your solution using the finite element method and
assuming that the soil is linear elastic with E = 1 × 107 kPa and ν = 0.3.

3.10 Using (3.13), calculate the increase in vertical stress under the center of a
4 m × 4 m foundation that is loaded uniformly with q = 100 kPa. Assume
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that the soil layer underlying the loaded area is very thick and linear elastic
with E = 1 × 107 kPa and ν = 0.3. Also calculate the increase in vertical
stress under the center using the finite element method. Compare the two
answers.
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CHAPTER 4

CONSOLIDATION

4.1 INTRODUCTION

When a saturated soil is loaded, its pore pressure increases. This pore pressure
increase, called excess pore pressure, u, dissipates from the boundaries of the soil
layer as time goes by, resulting in consolidation settlement. This process is time
dependent and is a function of the permeability of the soil, the length of the drainage
path (defined later), and the compressibility of the soil.

When saturated sands and gravels are loaded slowly, volume changes occur,
resulting in excess pore pressures that dissipate rapidly due to high permeability.
This is called drained loading. On the other hand, when silts and clays are loaded,
they generate excess pore pressures that remain entrapped inside the pores because
these soils have very low permeabilities. This is called undrained loading. Conse-
quently, the excess pore pressures generated by undrained loading dissipate slowly
from the soil layer boundaries, causing consolidation settlement.

Consider a saturated clay layer sandwiched between two sand layers, with a
groundwater table close to its top surface as shown in Figure 4.1. A uniform sur-
charge pressure of �σ = 10 kPa is suddenly applied to the top surface. This loading
is undrained and an excess pore pressure in the clay layer is generated instanta-
neously: u = �σ = 10 kPa. The water level in a piezometer (standpipe) positioned
at point A will rise a distance h = u/γw = 10 kPa/9.81 kN/m3 ≈1 m above the
level of the groundwater table. As time goes by, the excess pore pressure gradu-
ally dissipates from the top and bottom boundaries of the clay layer, and the water
level in the piezometer drops accordingly. This loss of water from the boundaries is
associated with consolidation settlements that take place gradually until the excess
pore pressure is totally dissipated and the water level in the piezometer drops to
the level of the groundwater table.
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FIGURE 4.1 One-dimensional consolidation.

4.2 ONE-DIMENSIONAL CONSOLIDATION THEORY

To obtain approximate estimates of consolidation settlements in many geotechnical
engineering problems, it is sufficient to consider that both water flow (due to excess
pore pressure dissipation) and deformations take place in the vertical direction
only. This is called one-dimensional consolidation and assumes that there is no
lateral strain. Figure 4.1 illustrates a typical case of one-dimensional consolidation:
a saturated clay layer that is loaded with a wide and uniform stress �σ. An example
of a wide and uniform stress is the stress resulting from depositing a wide even
layer of sand on top of the existing sand layer in Figure 4.1.

Terzaghi (1925) considered the simple one-dimensional consolidation model
shown in Figure 4.1, which consists of a cubic soil element subjected to vertical
loading and through which only vertical water flow and deformation can take
place. Several assumptions are used in the derivation of Terzaghi’s one-dimensional
consolidation equation:

1. The clay is fully saturated and homogeneous.

2. Water compressibility is negligible.

3. The compressibility of soil grains is also negligible, but soil grains can be
rearranged during consolidation.

4. The flow of water obeys Darcy’s law (v = ki), where k is the soil perme-
ability and i is the hydraulic gradient.

5. The total stress (�σ) applied to the element is assumed to remain constant.

6. The coefficient of volume compressibility, mv, is assumed to be constant.

7. The coefficient of permeability, k, for vertical flow is assumed to be constant.
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Using these assumptions and considering that the rate of volume change of the
cubic element (Figure 4.1) is equal to the difference between the rate of outflow
and the rate of inflow of water (∂V /∂t = qout − qin), one can derive the basic
equation for one-dimensional consolidation (Terzaghi’s equation):

cv

∂2u

∂z2
= ∂u

∂t
(4.1)

where cv is the coefficient of consolidation, given by

cv = k

mvγw

(4.2)

The solution of (4.1) must satisfy certain boundary and initial conditions (Fig-
ure 4.1):

Boundary conditions at the top of the clay layer: z = 0, u = 0 for 0 < t < ∞
Boundary conditions at the bottom of the clay layer: z = 2Hdr, u = 0

for 0 < t < ∞, (Hdr is defined in Section 4.2.1)

Initial conditions: t = 0, u = u0 for 0 ≤ z ≤ 2Hdr

For uniform (rectangular) initial excess pore pressure distribution with depth,
and using a Fourier series, the exact solution of (4.1) is

u =
m=∞∑
m=0

(
2u0

M
sin

Mz

Hdr

)
exp(−M2Tv) (4.3)

In which M = (π/2)(2m + 1); m = 0, 1, 2, 3, . . . , ∞; u0 is the initial excess pore
pressure; and Tv is a nondimensional number called the time factor, defined as

Tv = cvt

H 2
dr

(4.4)

Now define the degree of consolidation at depth z and time t as

Uz = u0 − u

u0
= 1 − u

u0
= 1 −

m=∞∑
m=0

(
2

M
sin

Mz

Hdr

)
exp(−M2Tv) (4.5)

The degree of consolidation at a point given by (4.5) is the ratio of the dissipated
excess pore pressure (= u0 − u) to the initial pore pressure at the same point
(= u0). For example, at t = 0, when stress is applied, the excess pore pressure
(u) is equal to the initial excess pore pressure (u0); therefore, Uz = 0 and no
consolidation has occurred. But when t → ∞, u → 0 and Uz → 1 (or 100%); that
is, the consolidation is 100% complete.
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Of more interest is the overall degree of consolidation of a clay layer rather
than the degree of consolidation at a point within the clay layer. So let’s define the
average degree of consolidation for the entire thickness of the clay layer at time t as

U = 1 −
(1/2Hdr)

∫ 2Hdr

0
u dz

u0
= 1 −

m=∞∑
m=0

2

M2
exp(−M2Tv) (4.6)

It is to be noted that in this equation the initial pore pressure distribution is assumed
to be uniform (rectangular) throughout the thickness of the clay layer. Also note
that at t = 0, when stress is applied, the excess pore pressure is equal to the initial
excess pore pressure; therefore, U = 0 for the entire layer and no consolidation
has occurred. But when t → ∞, U → 1 (or 100%); that is, the consolidation is
100% complete for the entire layer.

4.2.1 Drainage Path Length

For the excess pore pressure to dissipate during consolidation, water must travel to
the top boundary of the clay layer and sometimes to the bottom boundary as well,
where there is a soil layer that is considerably more permeable than the clay layer
itself. Logically, the rate of consolidation depends on the length of the longest path
traveled by a drop of water. This length is called the drainage path length, Hdr.
There are two possible drainage types:

1. Two-way drainage with a permeable layer both above and below the clay
layer, as indicated in Figure 4.2a. In this case the longest path traveled by a
drop of water located anywhere within the clay layer is Hdr = H/2, where
H is the thickness of the clay layer.

2. One-way drainage with a permeable layer above the clay layer. In this case,
Hdr = H , as indicated in Figure 4.2b.

4.2.2 One-Dimensional Consolidation Test

The consolidation characteristics of a soil can be measured in the laboratory
using the one-dimensional consolidation test, shown schematically in Figure 4.3.

(a) (b)
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Rock (Impervious)

∆σ

Sand

Clay H = Hdr

FIGURE 4.2 (a) Two- and (b) one-way drainage conditions.
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FIGURE 4.4 Deformation versus time curve (semilog).

A cylindrical specimen of soil measuring 75 mm in diameter and approximately
15 mm in thickness is enclosed in a metal ring and subjected to staged static loads.
Each load stage lasts 24 hours, during which changes in thickness are recorded.
The load is doubled with each stage up to the required maximum (e.g., 100, 200,
400, 800 kPa). At the end of the final loading stage, the loads are removed and
the specimen is allowed to swell. Figure 4.4 shows an example of the settlement
versus time curve obtained from one loading stage. Three types of deformations
are noted in the figure: initial compression, primary consolidation settlement, and
secondary compression or creep. Initial compression is caused by the soil’s elastic
response to applied loads. Primary consolidation settlement is caused by dissipation
of the excess pore pressure generated by load application. Secondary compression
is caused by the time-dependent deformation behavior of soil particles, which is
not related to excess pore pressure dissipation. Primary consolidation settlement is
our focus in this chapter.
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Enclosing the soil specimen in a circular metal ring is done to suppress lateral
strains. The specimen is sandwiched between two porous stones and kept sub-
merged during all loading stages; thus, the specimen is allowed to drain from top
and bottom. This is a two-way drainage condition in which the thickness of the
specimen is 2Hdr. The void ratio versus logarithm vertical effective-stress relation-
ship (e–log σ′

v) is obtained from the changes in thickness at the end of each load
stage of a one-dimensional consolidation test. An example of an e–log σ′

v curve is
shown in Figure 4.5.

Now define a preconsolidation pressure σ′
c as the maximum past pressure to

which a clay layer has been subjected throughout time. A normally consolidated
(NC) clay is defined as a clay that has a present (in situ) vertical effective stress σ′

0
equal to its preconsolidation pressure σ′

c. An overconsolidated (OC) clay is defined
as a clay that has a present vertical effective stress of less than its preconsolida-
tion pressure. Finally, define an overconsolidation ratio (OCR) as the ratio of the
preconsolidation pressure to the present vertical effective stress (OCR = σ′

c/σ
′
0).

To understand the physical meaning of OC clay, preconsolidation pressure, and
OCR, imagine a 20-m-thick clay layer that was consolidated with a constant pres-
sure of 1000 kPa caused by a glacier during the ice age. The glacier melted away
and the pressure that had been exerted was gone totally. Thus, the preconsolida-
tion pressure is 1000 kPa, the maximum past pressure exerted. Assuming that the
groundwater table level is now at the top surface of the clay layer and that the sat-
urated unit weight of the clay is 19.81 kN/m3, the present vertical effective stress
in the middle of the clay layer is σ′

0 = (γsat − γw)H/2 = (19.81−9.81)20/2 =
100 kPa. The present vertical effective stress, 100 kPa, is less than the precon-
solidation pressure of 1000 kPa. Therefore, the clay is overconsolidated. The
overconsolidation ratio of this clay is σ′

c/σ
′
0 = 1000 kPa/100 kPa = 10.

The preconsolidation pressure is a soil parameter that can be obtained from its
e–log σ′

v curve deduced from the results of a one-dimensional consolidation test.

e0

σ′0 σ′0σ′c σ′clog σ′v log σ′v

Cc

Cs 1

1

(a) (b)

Loading

Unloading

e e

FIGURE 4.5 Void ratio versus vertical effective stress (semilog): (a) consolidation test
results; (b) idealization.
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The preconsolidation pressure is located near the point where the e–log σ′
v curve

changes in slope, as shown in Figure 4.5a (Casagrande, 1936). Other consolidation
parameters, such as the compression index (Cc) and swelling index (Cs), are also
obtained from the e–log σ′

v curve. The compression index is the slope of the
loading portion, in the e-log σ′

v curve, and the swelling index is the slope of the
unloading portion, as indicated in Figure 4.5b.

The coefficient of consolidation, cv , is an essential parameter for consolidation
rate calculations [Terzaghi’s one-dimensional consolidation equation (4.1)]. The
coefficient of consolidation can be obtained from the changes in thickness recorded
against time during one load stage of a one-dimensional consolidation test. This
is done using the square-root-of-time method or the log-time method. The square-
root-of-time method (Taylor, 1948) uses a plot of deformation versus the square root
of time. Figure 4.6a shows a typical plot of deformation versus the square-root-of-
time at a given applied load. The square-root-of-time method involves drawing a
line AB through the early straight-line segment of the curve. Another line, AC, is
drawn in such a way that OC = 1.15OB. The x-coordinate of point D, which is the
intersection of AC with the curve, gives

√
t90 (the square root of time corresponding

to U = 90%). One can use (4.6) to show that for a 90% degree of consolidation,
the dimensionless time factor Tv is 0.848. Then (4.4) yields cv = 0.848H 2

dr/t90. The
value of t90 can be obtained from Figure 4.6a as explained above. Hdr is equal to
the thickness of the soil specimen in the one-dimensional consolidation test if it is
allowed to drain from one side only (one-way drainage). If the specimen is allowed
to drain from both sides (top and bottom), Hdr is equal to half the thickness of the
soil specimen.

The log-time method (Casagrande and Fadum, 1940) uses a plot of deformation
versus the logarithm of time. Figure 4.6b shows a typical plot of deformation
versus the logarithm of time at a given applied load. The log-time method involves
extending the straight-line segments of the primary consolidation and the secondary
compression. The extensions will intercept at point A. The y-coordinate of point

t90

A

B C

D

O

D
ef

or
m

at
io

n

D
ef

or
m

at
io

n

time log(time)

2

d0 + d100d50 =

d0

d50

d100

t1 t2 t50

A

B C

D E
δ δ

F

(a) (b)

FIGURE 4.6 Graphical procedures for determining the coefficient of consolidation:
(a) square-root-of-time method; (b) log-time method.
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A is d100, which is the deformation corresponding to 100% consolidation. On the
initial portion of the deformation versus log-time plot, select two points, B and C,
at times t1 and t2, respectively, such that t2 = 4t1. The vertical difference between
points B and C is equal to δ. Draw a horizontal line DE at a vertical distance
BD equal to δ. DE intercepts with the y-axis at d0, which is the deformation
corresponding to 0% consolidation. Now calculate d50 as the average of d0 and
d100. Draw a horizontal line at d50 that will intercept with the curve at point F. The
x-coordinate of point F is t50, which is the time corresponding to 50% consolidation.
Equation (4.6) can be used to calculate the dimensionless time factor Tv(= 0.197),
which corresponds to U = 50%. Then (4.4) can be used to calculate the coefficient
of consolidation: cv = 0.197H 2

dr/t50.

4.3 CALCULATION OF THE ULTIMATE CONSOLIDATION
SETTLEMENT

Think of the e–log σ′
v curve as a strain–stress curve (inverse of stress–strain)

that can be used to calculate the ultimate consolidation settlement of a clay layer
subjected to a change of stress = �σ′. The e–log σ′

v curve has two distinctive
slopes, Cc and Cs , as shown in Figure 4.5. This curve is what we need to calculate
the change in void ratio, �e, caused by a change in stress, �σ′, as shown in
Figure 4.7. The consolidation settlement, Sc, can be calculated as

Sc = �e

1 + e0
H (4.7)

where H is the thickness of the clay layer and e0 is the initial (in situ) void ratio
of the clay layer (i.e., the void ratio before �σ′ was applied).

To calculate Sc, one must calculate �e first. The calculation of �e depends
on the clay type (NC or OC) and on the stress condition (�σ′ + σ′

0). Figure 4.7
illustrates three possible cases.

Case 1: NC Clay As you recall, NC clay has σ′
0 = σ′

c. The e–log σ′
v curve for

NC clay can be idealized as a straight line having a slope equal to Cc, as shown in
Figure 4.7a. Adding a stress increment �σ′ to the in situ stress σ′

0 causes a change
in void ratio equal to �e that can be calculated as

�e = Cc log
σ′

0 + �σ′

σ′
0

(4.8)

Substituting (4.8) into (4.7) yields

Sc = Cc

H

1 + e0
log

σ′
0 + �σ′

σ′
0

(4.9)
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FIGURE 4.7 Calculation of consolidation settlements: (a) NC clay; (b) OC clay with
�σ′ + σ′

0 < σ′
c; (c) OC clay with �σ′ + σ′

0 > σ′
c.

Case 2: OC Clay with �σ′ + σ′
0 < σ′

c OC clay has σ′
0 < σ′

c. The e–log σ′
v

curve for OC clay can be idealized as a bilinear curve having two distinctive slopes
of Cs and Cc as shown in Figure 4.7b. Adding a stress increment �σ′ to the in
situ stress σ′

0 such that �σ′ + σ′
0 < σ′

c causes a change in void ratio equal to �e

that can be calculated as

�e = Cs log
σ′

0 + �σ′

σ′
0

(4.10)

Substituting (4.10) into (4.7) yields

Sc = Cs

H

1 + e0
log

σ′
0 + �σ′

σ′
0

(4.11)

Case 3: OC Clay with �σ′ + σ′
0 > σ′

c When �σ′ + σ′
0 is greater than σ′

c, the
two segments of the bilinear curve must be considered for calculating �e, as shown
in Figure 4.7c. The following equation can easily be obtained for this condition:

Sc = H

1 + e0

(
Cs log

σ′
c

σ′
0

+ Cc log
σ′

0 + �σ′

σ′
c

)
(4.12)

4.4 FINITE ELEMENT ANALYSIS OF CONSOLIDATION PROBLEMS

Consolidation analysis of saturated soils requires the solution of coupled stress–
diffusion equations. In a coupled finite element analysis, the effective-stress prin-
ciple is applied. Each point of the saturated soil mass is subject to a total stress
σ, which is the sum of the effective stress σ′ carried by the soil skeleton, and
the pore pressure u. The pore pressure will increase by the addition of a load to
the soil. Consequently, a hydraulic gradient of pore pressure will develop between
two points within the soil mass. This hydraulic gradient between the two points
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will cause the water to flow. The flow velocity v is assumed to be proportional
to the hydraulic gradient i according to Darcy’s law, v = ki, where k is the soil
permeability. As the external load is applied to the soil mass, the pore pressure
rises initially; then as the soil skeleton absorbs the extra stress, the pore pressures
decrease and the soil consolidates.

4.4.1 One-Dimensional Consolidation Problems

In many consolidation problems, it is sufficient to consider that both water flow
(due to excess pore pressure dissipation) and deformations take place in the vertical
direction only. This means that we can use the theory of one-dimensional consolida-
tion for the analysis of such problems noting that in one-dimensional consolidation
it is assumed that there is no lateral strain. The following five examples show how
to solve simple one-dimensional consolidation problems using finite element. In
each example, the finite element results are compared with the analytical results
that are obtained using the consolidation concepts that we have learned in the
preceding sections.

Example 4.1 One-Dimensional Consolidation: Consolidation Analysis Assum-
ing Linear Elastic Behavior of Soil (a) Using the solution of Terzaghi’s one-
dimensional consolidation equation, plot the relationship between U and Tv for
a cylindrical clay sample (Figure 4.8) that is 4 cm in diameter and 3.5 cm high
confined by an impermeable, smooth, rigid cylindrical container and subjected to
a sudden surcharge of 4 kg/cm2. The top surface of the container is open and per-
meable. The clay has a constant permeability k = 6 × 10−6cm/min, a coefficient
of consolidation cv = 0.16135 cm2/min, and an initial void ratio e0 = 1.0.

(b) Use the finite element method to solve the same problem assuming that the
soil is linear elastic with Poisson’s ratio ν = 0.33.

Axis of Symmetry 
Axisymmetric
Finite Element 

Mesh

4 cm 

3.5 cm 3.5 cm

2 cm

x

z

FIGURE 4.8 Axisymmetric finite element discretization of a one-dimensional consolida-
tion test.
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SOLUTION: (a) Terzaghi’s one-dimensional consolidation equation solution (exact
solution) First, let’s calculate the dimensionless time factor as a function of time
t . From (4.4),

Tv = cvt

H 2
dr

= 0.16135t

3.52
= 0.0132t

Next, let’s calculate the average degree of consolidation of the 3.5-cm-thick clay
layer using (4.6):

U = 1 −
m=∞∑
m=0

2

M2
exp(−M2Tv)

in which M = (π/2)(2m + 1); m = 0, 1, 2, 3, . . . , ∞; and Tv = 0.0132t . A spread-
sheet was established to expand this expression for the evaluation of U as a function
of t ranging from 0 to 100 minutes. The results are shown in Table 4.1 and plotted
in Figure 4.9.

(b) Finite element solution (filename: Chapter4 Example1.cae) The problem
is shown in Figure 4.8. A cylindrical soil specimen 4 cm in diameter and 3.5 cm in
height is confined by an impermeable, smooth, rigid cylindrical container. The top
surface is open and permeable. The load is applied suddenly to the top surface. The
purpose of the analysis is to predict the time dependency of the effective stress and
pore water pressure in the soil mass after load application and to compare those
with the exact solution of the one-dimensional consolidation equation.

TABLE 4.1 Tv Versus U

t (min) Tv = 0.0132t U

0 0 0.017413
1 0.0133 0.1293
2 0.0266 0.1833
3 0.0399 0.2247
4 0.0533 0.2597
5 0.0666 0.2904
7 0.0933 0.3438

10 0.133 0.4111
15 0.199 0.5032
20 0.2667 0.5792
30 0.4 0.697
40 0.533 0.782
50 0.666 0.843
60 0.7998 0.887
70 0.9331 0.9186
80 1.0664 0.9414
90 1.1997 0.9578

100 1.333 0.9696
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FIGURE 4.9 Average degree of consolidation versus time factor: comparison between
Terzaghi’s exact solution and FEM.

A two-dimensional axisymmetric mesh is used, with one element only in the
x-direction (2 cm wide) and five elements in the z-direction (total height of 3.5 cm),
as shown in Figure 4.8. The element chosen is a pore fluid/stress four-node axisym-
metric quadrilateral element (with bilinear displacement and bilinear pore pressure)
appropriate for finite-strain analysis. The soil is assumed to be linear elastic.
Young’s modulus, E, is not given explicitly in this problem. We attempt to calcu-
late it from mv knowing that k = mvcvγw, where mv is the coefficient of volume
compressibility that is equal to the inverse of the constrained modulus of elastic-
ity, M . The constrained modulus is a function of Young’s modulus and Poisson’s
ratio, ν:

M = (1 − ν)E

(1 + ν)(1 − 2ν)

The coefficient of volume compressibility is defined as

mv = 1

M
= (1 + ν)(1 − 2ν)

(1 − ν)E

But, mv = k/cvγw. Therefore,

(1 + ν)(1 − 2ν)

(1 − ν)E
= k

cvγw

Finally,

E = cvγw(1 + ν)(1 − 2ν)

k(1 − ν)
= (0.16135)(0.001)(1 + 0.33)[1 − (2)(0.33)]

(6 × 10−6)(1 − 0.33)

= 18.15 kg/cm2

where ν = 0.33 and γw = 0.001 kg/cm3.
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When coupled analysis is performed on a saturated soil mass, two types of
boundary conditions must be specified: displacement boundary conditions (or the
equivalent) and hydraulic boundary conditions. Therefore, the boundary conditions
of the finite element mesh shown in Figure 4.8 are as follows. On the bottom side,
the vertical component of displacement is fixed (uz = 0), and on the right-hand
side, the horizontal component of displacement is fixed (ux = 0) to simulate the
frictionless interface between the soil and the rigid container. The left-hand side of
the mesh is a symmetry line (no horizontal displacement). Note that the container is
not modeled in the analysis. Flow of pore water through the walls of the container is
not allowed—this is the natural boundary condition in the fluid mass conservation
equation, so there is no need to specify it. On the top surface a uniform downward
load of 4 kg/cm2 is applied suddenly. During load application the top surface is
made impervious, thereafter, a perfect drainage is assumed so that the excess pore
pressure is always zero on this surface.

The problem is run in four steps. The first step is a single increment of analysis
with a 0.01-minute time duration, with no drainage allowed across the top surface.
When a sudden load is applied, a uniform pore pressure equal to the applied load is
generated throughout the body. At that stage, the applied stress is totally carried by
the pore water, u, and no stress is carried by soil skeleton (�u = �σ = 4kg/cm2,
�σ′ = 0). The hydraulic boundary condition of the top surface is then changed to
a pervious boundary condition having u = 0, and the actual consolidation is done
in three steps, each using fixed-time stepping. The durations of the three steps are
1, 10, and 100 minutes. Each step is divided into 10 equal substeps. The reason for
choosing smaller time increments in the early stages is to capture the consolidation
settlements, most of which occur following load application. Consolidation is a
typical diffusion process; initially, the stress and pore pressure change rapidly
with time, while more gradual changes in stress and pore pressure are seen at
later times. This is also recognized through experiments. The one-dimensional
consolidation test requires rapid readings of settlements following load application.
Time increments between readings can be relaxed at later times.

From the results of the finite element analysis, the average degree of consolida-
tion (U ) is plotted with the dimensionless time factor (Tv) as shown in Figure 4.9.
The average degree of consolidation is calculated as U = 1 − uave/u0, where uave

is the average excess pore pressure in the center of the five elements shown in
Figure 4.8 and u0 is the initial excess pore pressure (= �σ = 4 kg/cm2). For com-
parison, the exact solution [part (a) of this example] is also plotted in Figure 4.9. It
is noted in the figure that the numerical solution agrees very well with the analytical
solution.

The change in effective stress and pore pressure with respect to time is shown
in Figure 4.10, as obtained from finite element analysis. Very good agreement with
the exact solution (the solution of Terzaghi’s equation) is noted in the figure.

In this example the permeability of the soil is assumed to be constant. However,
it is possible in the finite element computer program used herein to consider the
case in which the permeability decreases as the void ratio decreases from its initial
value. If that assumption is used, the time required for the excess pore pressure
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FIGURE 4.10 Variation of effective stress and excess pore pressure with time: comparison
between Terzaghi’s exact solution and FEM.

to dissipate will increase. Also, note that the final value of displacement (ultimate
consolidation settlement) under the applied load is not a function of permeability
as indicated by (4.12).

Example 4.2 One-Dimensional Consolidation Analysis Assuming Elastoplastic
Behavior of Soil Using the finite element method, calculate the consolidation set-
tlement as a function of time for a cylindrical clay sample that is 20 cm in diameter
and 10 cm high confined by an impermeable, smooth, rigid cylindrical container
and subjected to a sudden surcharge of 20 kPa (Figure 4.11). Before applying the
sudden surcharge, the clay specimen was subjected to a 9.19-kPa “seating” pressure.
The top and bottom surfaces of the container are open and permeable. The clay
is normally consolidated and has a constant permeability k = 6 × 10−9 m/s, and
initial void ratio e0 = 1.5, corresponding to its 9.19-kPa seating pressure. Assume
that the clay is elastoplastic, obeying the extended Cam clay model (Chapter 2).
The Cam clay model parameters for this clay are given in Table 4.2.

TABLE 4.2 Cam Clay Model Parameters

General Plasticity

ρ (kg/m3) 1923 λ 0.1174
k (m/s) 6 × 10−9 Stress ratio, M 1
γw(kN/m3) 9.81 Initial yield surface
e0 1.5 size = p′

0/2 (kPa) 4.595
Elasticity Wet yield surface size 1

κ 0.01957 Flow stress rate 1
ν 0.28
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SOLUTION(filename: Chapter4 Example2.cae): The parameter κ defines the
elastic behavior of the soil in the Cam clay model. The parameter κ is related to
the swelling index through the equation κ = Cs /2.3. The parameter λ is related to
the compression index through λ = Cc/2.3. The strength parameter M is related
to the internal friction angle of the soil, φ′, as follows:

M = 6 sin φ′

3 − sin φ′

A good practice is to solve the problem analytically, when possible, before
seeking a numerical solution. Because this is a normally consolidated clay, we can
use (4.9) to calculate its ultimate consolidation settlement. The initial condition of
the clay layer is fully defined by its in situ vertical effective stress, σ′

0 = 9.19 kPa,
and its in situ void ratio, e0 = 1.5. The compression index Cc is equal to 2.3λ =
0.27. Now we can use (4.9):

Sc = 0.27

(
0.1

1 + 1.5

)
log

9.19 + 20

9.19
= 0.00542 m = 5.42 mm

In the Cam clay model, the yield surface size is described fully by the parameter
p′ = (σ′

1 + 2σ′
3)/3. The evolution of the yield surface is governed by the volumetric

plastic strain ε
p

vol, which is a function of p′. The relationship between ε
p

vol and p′
can be deduced easily from an e–log σ′

v line. The consolidation curve (the e–log σ′
v

line) is defined completely by its slope Cc(= 2.3λ), and the initial conditions σ′
0

and e0. Note that λ, σ′
0 and e0 are part of the input parameters required in the finite

element program used herein.
The preconsolidation pressure, σ′

c, is also a required parameter. It is specified
by the size of the “initial” yield surface, as shown in Table 4.2. Consider the initial
yield surface that corresponds to σ′

0 = 9.19 kPa (or p′
0/2 = 4.595 kPa), where σ′

0 =
9.19 kPa is the in situ vertical effective stress at the center of the clay specimen
(= seating pressure). In this example, σ′

c is assumed to be equal to the in-situ
vertical effective stress, indicating that the clay is normally consolidated. If the
clay were overconsolidated, its σ′

c can be set equal to its preconsolidation pressure,
which is greater than its in situ vertical effective stress.

A two-dimensional axisymmetric mesh is used, with one element only in the x-
direction (10 cm wide) and 12 elements in the z-direction (total height of 10 cm), as
shown in Figure 4.11. The element chosen is a pore fluid/stress four-node axisym-
metric quadrilateral element with bilinear displacement and bilinear pore pressure.
The boundary conditions of the finite element mesh shown in Figure 4.11 are as
follows. On the bottom side, the vertical and horizontal components of displace-
ment are fixed (ux = uz = 0), and on the right-hand side, the horizontal component
of displacement is fixed (ux = 0) to simulate the frictionless interface between the
soil and the rigid container. The left-hand side of the mesh is a symmetry line
(no horizontal displacement). Note that the container is not modeled in the analy-
sis. Flow of pore water through the walls of the container is not allowed. On the
top surface a uniform downward pressure of 20 kPa is applied suddenly. During
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FIGURE 4.11 Axisymmetric finite element discretization of a one-dimensional consoli-
dation test.

load application the top and bottom surfaces are made impervious; thereafter, per-
fect drainage is assumed so that the excess pore pressure is always zero on these
surfaces.

The problem is run in three steps. The first step is a single increment of analysis
with no drainage allowed across the top and bottom surfaces. In this step the seating
pressure of 9.19 kPa is applied at the top surface. During step 1, the “geostatic”
command is invoked to make sure that equilibrium is satisfied within the clay
layer. The geostatic option makes sure that the initial stress condition in any ele-
ment within the clay specimen falls within the initial yield surface of the Cam clay
model. In step 2, a sudden 20-kPa pressure is applied, and a uniform pore pressure
equal to the applied pressure is generated throughout the body. At that stage, the
applied stress is carried totally by the pore water, u, and no stress is carried by
the soil skeleton (�u = �σ = 20 kPa, �σ′ = 0). In step 3, the hydraulic bound-
ary condition of the top and bottom surfaces is changed to a pervious boundary
condition having u = 0, and the actual consolidation is performed using automatic
time stepping. The durations of the three steps are 0.01, 10, and 100,000 seconds.

The time history calculated for vertical settlement is plotted in Figure 4.12,
where it is compared with the solution obtained using (4.9). There is a relatively
good agreement between the theoretical solution and the finite element solution. The
difference between the results of the theoretical and numerical analyses is attributed
primarily to stress anisotropy (K0 condition). The Cam clay model used here is
better suited for isotropic stress conditions. This shortcoming can be overlooked,
however, because of the other many advantages of using the Cam clay model.

Example 4.3 Ultimate Consolidation Settlement of an NC Clay Layer Consider
a 1-m-thick NC clay layer sandwiched between two sand layers, with a groundwater
table at the top ground surface as shown in Figure 4.13a. The initial void ratio of
the clay layer is 0.8, its compression index is 0.27, and its swelling index is 0.045.
A uniform surcharge pressure q = 100 kPa is applied to the top surface. Calculate
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FIGURE 4.12 Consolidation settlement of the NC clay specimen: FEM versus analytical
solution.
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FIGURE 4.13 Ultimate consolidation settlement calculations.
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TABLE 4.3 Cam Clay Model Parameters

General Plasticity

ρ (kg/m3) 1923 λ 0.1174
k (m/sec) 6 × 10−8 Stress ratio, M 1
γw(kN/m3) 9.81 Initial yield surface size = p′

0/2 (kPa) 26.85
e0 0.8 Wet yield surface size 1

Elasticity Flow stress rate 1
κ 0.01957
ν 0.28

the ultimate consolidation settlement of the clay layer (a) analytically and (b)
using finite element analysis. Assume that the clay layer is elastoplastic obeying
the extended Cam clay model with the parameters given in Table 4.3.

SOLUTION: (a) Analytical solution Because this is normally consolidated clay,
we need to use (4.9) to calculate its ultimate consolidation settlement. Let’s calcu-
late the in situ vertical effective stress at the center of the clay layer:

σ′
0 = (6)(18 − 9.91) + ( 1

2 )(19 − 9.81) = 53.7 kPa

The initial condition of the clay layer is fully defined by its in situ vertical effec-
tive stress and in situ void ratio. Figure 4.13b shows this initial condition and
illustrates how an increase in the vertical effective stress (�σ′ = 100 kPa) can
cause a change in void ratio (�e = 0.11). Now we can use (4.9) to calculate the
ultimate consolidation settlement of the clay layer:

Sc = 0.27

(
1

1 + 0.8

)
log

53.7 + 100

53.7
= 0.06848 m = 68.48 mm

(b) Finite element analysis (filename: Chapter4 Example3.cae) In this analy-
sis, the clay layer is assumed elastoplastic, obeying the extended Cam clay model
(Chapter 2). The Cam clay model parameters for the clay layer are given in
Table 4.3. An important input parameter for the Cam clay model is the precon-
solidation pressure, σ′

c, which is specified by the size of the initial yield surface
(see Table 4.3). Consider the initial yield surface that corresponds to σ′

0 = 53.7 kPa
in Figure 4.13b (or p′

0/2 = 26.85 kPa), where σ′
0 = 53.7 kPa is the in situ verti-

cal effective stress at the center of the clay layer. In this example, σ′
c is assumed

to be equal to the in situ vertical effective stress, indicating that the clay is nor-
mally consolidated. If the clay were overconsolidated, its σ′

c can be set equal to its
preconsolidation pressure, which is greater than its in situ vertical effective stress.

A two-dimensional plane strain mesh is used, with one element only in the x-
direction (20 cm wide) and five elements in the z-direction (total height of 100 cm)
for the clay layer, and six elements (total height of 6 m) for the sand layer, as shown
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FIGURE 4.14 Finite element discretization.

in Figure 4.14. There is no need to consider the bottom sand layer in the finite
element mesh, but its effect as a drainage layer is considered by assuming that the
bottom surface of the clay layer is drained. The element chosen is a pore fluid/stress
eight-node plane strain quadrilateral element with biquadratic displacement, bilinear
pore pressure, and reduced integration.

On the bottom side of the finite element mesh, shown in Figure 4.14, the hor-
izontal and vertical components of displacement are fixed (ux = uz = 0), and on
the right- and left-hand sides the horizontal component of displacement is fixed
(ux = 0). On the top surface a uniform downward pressure of 100 kPa is applied
suddenly. During load application the top and bottom surfaces are made impervi-
ous, thereafter, perfect drainage is assumed, so the excess pore pressure is always
zero on these surfaces. The initial void ratio and vertical and horizontal effective
stress profiles of the upper sand layer and the clay layer are part of the input data
that must be supplied to the finite element program for this consolidation analysis.
In this analysis, the initial horizontal effective stress is assumed to be 50% of the
vertical effective stress.

The problem is run in eight steps. In step 1 the effective self-weights of the top
sand layer and the clay layer are applied using the “body-force” option. As men-
tioned earlier, the clay layer is assumed to be elastoplastic obeying the extended
Cam clay model. In general, using such a model is essential because we are con-
cerned with the ability of the clay layer to withstand the stresses caused by various
types of loading, and a model like the Cam clay model can detect failure within
the clay layer. During step 1 the “geostatic” command is invoked to make sure
that equilibrium is satisfied within the clay layer. The geostatic option makes sure
that the initial stress condition in any element within the clay layer falls within the
initial yield surface of the Cam clay model.
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The second step is a single increment of analysis with a 1-second time duration,
with no drainage allowed across the top and bottom surfaces of the clay layer.
In this step, a sudden stress of 100 kPa is applied, and a uniform pore pressure
equal to the applied stress is generated throughout the clay layer. At that stage,
the applied stress is carried totally by the pore water u; none is carried by the soil
skeleton (�u = �σ = 100 kPa, �σ′ = 0). The hydraulic boundary conditions of
the top and bottom surfaces are then changed to pervious boundary conditions with
u = 0, and the actual consolidation is done in six steps. The durations of the six
steps are 1, 10, 100, 1000, 10,000, and 100,000 seconds. Each step is divided into
10 equal substeps. The reason for choosing smaller time increments in the early
stages is to capture the consolidation settlements, most of which occur following
load application. Consolidation is a typical diffusion process: Initially, the stress
and pore pressure change rapidly with time; more gradual changes in stress and
pore pressure are seen at later times.

From the results of the finite element analysis, the average pore pressure of the
five elements of the clay layer is plotted along with the average vertical effective
stress in the same elements as shown in Figure 4.15. The consolidation settlement
versus time curve for the clay layer is shown in Figure 4.16. The ultimate con-
solidation settlement calculated using (4.9) is shown in the figure for comparison.
It is noted from the figure that the numerical solution agrees with the analytical
solution.

Example 4.4 Ultimate Consolidation Settlement of an OC Clay Layer (�σ′ +
σ′

0 < σ′
c) Consider a 1-m-thick OC clay layer sandwiched between two sand lay-

ers, with a groundwater table at the top ground surface as shown in Figure 4.17a.
The initial void ratio of the clay layer is 0.6715, its preconsolidation pressure is
200 kPa, its compression index is 0.27, and its swelling index is 0.045. A uni-
form surcharge pressure q = 50 kPa is applied to the top surface. Calculate the
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FIGURE 4.15 Variation of effective stress and excess pore pressure with time.
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FIGURE 4.16 Consolidation settlement of the NC clay layer (Example 4.3).
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ultimate consolidation settlement of the clay layer (a) analytically and (b) using
finite element analysis.

SOLUTION: (a) Analytical solution We need to calculate the in situ vertical
effective stress at the center of the clay layer:

σ′
0 = (6)(18 − 9.91) + ( 1

2 )(19 − 9.81) = 53.7 kPa

The initial condition of the clay layer is fully defined by its in situ vertical effective
stress = 53.7 kPa and in situ void ratio = 0.6715. Since �σ′ + σ′

0 = 50 kPa +
53.7 kPa = 103.7 kPa < σ′

c = 200 kPa, we need to use (4.11):

Sc = 0.045

(
1

1 + 0.6715

)
log

53.7 + 50

53.7
= 0.0077 m = 7.7 mm

(b) Finite element analysis (filename: Chapter4 Example4.cae) This example
is the same as Example 4.3 except that the clay layer in the present example is
overconsolidated. The solution procedure is almost identical to that of Example 4.3.
The OC clay layer is assumed elastoplastic, obeying the extended Cam clay model
(Chapter 2). The Cam clay model parameters for the clay layer are given in
Table 4.4.

In the present example, the initial yield surface size is taken as p′
0 = 200 kPa, as

indicated in Table 4.4. This initial yield surface corresponds to σ′
c = 200 kPa, which

is the preconsolidation pressure of the clay. The in situ vertical effective stress at
the center of the clay layer, σ′

0 = 53.7 kPa (part of the input data), is less than the
preconsolidation pressure, indicating that this clay layer is overconsolidated.

The finite element mesh and solution procedures are identical to those used in
Example 4.3. Note that the applied pressure in this example is 50 kPa. The con-
solidation settlement versus time curve for the clay layer is shown in Figure 4.18.
The ultimate consolidation settlement calculated using (4.11) is shown in the figure
for comparison. It is noted from the figure that the numerical solution agrees with
the analytical solution.

TABLE 4.4 Cam Clay Model Parameters

General Plasticity

ρ (kg/m3) 1923 λ 0.1174
k (m/s) 6 × 10−8 Stress ratio, M 1
γw(kN/m3) 9.81 Initial yield surface size = p′

0/2 (kPa) 100
e0 0.6715 Wet yield surface size 1

Elasticity Flow stress rate 1
κ 0.01957
ν 0.28
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FIGURE 4.18 Consolidation settlement of the OC clay layer (Example 4.4).

Example 4.5 Ultimate Consolidation Settlement of an OC Clay Layer (�σ′ +
σ′

0 > σ′
c) Repeat Example 4.4 with an applied pressure of 400 kPa.

SOLUTION: (a) Analytical solution The in situ vertical effective stress at the
center of the clay layer is σ′

0 = 53.7 kPa. The initial condition of the clay layer
is fully defined by its in situ vertical effective stress = 53.7 kPa and in situ void
ratio = 0.6715. Since �σ′ + σ′

0 = 400 kPa + 53.7 kPa = 453.7 kPa > σ′
c =

200 kPa, we need to use (4.12) (Figure 4.19):

Sc = 1

1 + 0.6715

(
0.045 log

200

53.7
+ 0.27 log

53.7 + 400

200

)
= 0.0728 m

= 72.8 mm

σ′c

∆e

∆σ′ = 400 kPa

= 200 
kPa

log σv

= 53.7
kPa

e

Cc

Cs

e0 = 0.6715
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FIGURE 4.19 Calculation of consolidation settlements: OC clay with �σ′ + σ′
0 > σ′

c.
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FIGURE 4.20 Consolidation settlement of the OC clay layer (Example 4.5).

(b) Finite element analysis (filename: Chapter4 Example5.cae) The finite ele-
ment mesh, material parameters, and solution procedures are identical to those used
in Example 4.4. Note that the applied pressure in this example is 400 kPa. The con-
solidation settlement versus time curve for the clay layer is shown in Figure 4.20.
The ultimate consolidation settlement calculated using (4.12) is shown in the figure
for comparison. It is noted from the figure that the numerical solution agrees well
with the analytical solution.

4.4.2 Two-Dimensional Consolidation Problems

Many practical consolidation problems are two- or three-dimensional. Examples
include a strip foundation situated on a clay layer (two-dimensional), a rectangular
or square foundation on a clay layer (three-dimensional), an embankment under-
lain by a clay layer (two-dimensional), and so on. Terzaghi’s one-dimensional
consolidation theory offers a rough estimate of consolidation settlements for such
problems. The following three examples illustrate cases of special interest: (1) the
settlement history of a partially loaded linear elastic soil layer—this particular case
is chosen to illustrate two-dimensional consolidation because an exact solution is
available (Gibson et al., 1970), thus providing verification of this capability in the
finite element computer program used herein; (2) the two-dimensional consolida-
tion of a clay layer subjected to sequential construction of an embankment; and
(3) the two-dimensional consolidation of a thick elastoplastic clay layer subjected
to strip loading.

Example 4.6 Two-Dimensional Consolidation —Numerical Solution Versus Gib-
son’s Solution A fully saturated soil layer with infinite horizontal extension in the
x-direction and a finite height of 50 mm is subjected to a 50-mm-wide strip load
of 3.45 MPa as shown in Figure 4.21. The soil layer is supported by a frictionless
rigid surface (i.e., the bottom boundary of the layer is free to slide in the horizontal
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FIGURE 4.21 Finite element discretization of Gibson’s two-dimensional consolidation
problem.

direction). The bottom boundary is assumed to be impervious. The soil is linear
elastic with E = 690 GPa, ν = 0, and k = 5.08 × 10−7 m/day. The pore fluid has a
specific weight of 272.9 kN/m3. The theoretical treatment of this two-dimensional
consolidation problem is available elsewhere (Gibson et al., 1970), and the con-
solidation settlement at the center of the loaded strip area with respect to time is
readily available using the material parameters above (see Figure 4.22). Calculate
the consolidation settlement at the center of the loaded strip area with respect to
time using a finite element consolidation program and compare with the theoretical
curve shown in Figure 4.22. (Note that the material parameters in this example are
chosen only for illustration purposes and do not reflect the behavior of a real soil
and pore fluid.)
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FIGURE 4.22 Consolidation settlement at the center of the loaded area with time: com-
parison between Gibson’s exact solution and FEM.
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SOLUTION(filename: Chapter4 Example6.cae): Clearly, this is a two-dimen-
sional consolidation problem since the loaded strip region is as wide as the depth of
the soil layer, which means that the soil will consolidate vertically and horizontally
as well, especially in the vicinity of the loaded area. The geometry of the problem
conforms to the plane strain condition since the soil layer and the applied strip load
are extended infinitely in the y-direction (normal to Figure 4.21). Only one-half of
the geometry is considered because of symmetry, as indicated by the finite element
mesh shown in Figure 4.21. In the theoretical derivation of the solution of this
two-dimensional problem, the soil layer was assumed to be infinitely long in the
x-direction. Therefore, the finite element mesh is made very long in the horizontal
direction (20 × foundation width)—this distance is very large compared to the
width of the loaded strip and will cause the boundary effect to be diminished. An
alternative solution may consider the use of infinite elements at the right-hand side
of the finite element mesh.

A reduced-integration plane strain element with pore pressure is used in this
analysis. The finite element mesh shown in Figure 4.21 is made finer (biased) near
the zone where the load is applied. Coarser elements are used away from the loaded
zone. The soil is assumed linear elastic with E = 690 GPa; ν = 0; k = 5.08 ×
10−7 m/day, and γfluid = 272.9 kN/m3. The load was applied instantaneously with
a magnitude of 3.45 MPa. The soil layer is assumed to lie on a smooth, impervious
base, so the vertical component of displacement is set to zero on that surface (uz =
0). The left-hand side of the mesh is a symmetry line (no horizontal displacement).
The right-hand side of the mesh is assumed to slide freely in the vertical direction
with ux = 0.

The problem is run in six steps. In the first step, the load is applied and no
drainage is allowed across the top surface of the mesh. This step establishes the
initial distribution of excess pore pressures within the soil. These excess pore
pressures will dissipate from the top surface of the soil layer during subsequent
consolidation steps. To allow that, the hydraulic boundary condition of the top
surface is changed to a pervious boundary condition with u = 0, and the actual
consolidation is done with five time steps, each using fixed-time stepping. The
durations of the five steps are 0.00001, 0.0001, 0.001, 0.01, and 0.1 day. Each step
is divided into 10 equal substeps. The reason for choosing smaller time increments
in the early stages is to capture the consolidation settlements, most of which occur
following load application.

The time history calculated for vertical settlement of the central point under the
strip load is plotted in Figure 4.22, where it is compared with the exact solution by
Gibson et al. (1970). There is a good agreement between the theoretical solution
and the finite element solution.

Example 4.7 Sequential Construction of an Embankment on a Clay Layer Cal-
culate the consolidation settlement under the center of a 1.8-m-high embankment
founded on a 4.57-m-thick clay layer underlain by an impermeable layer of rock.
The groundwater table is coincident with the top surface of the clay layer, as indi-
cated in Figure 4.23. The embankment is constructed in three equal layers, each
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FIGURE 4.23 Finite element Discretization of an embankment on a soft foundation.

TABLE 4.5 Cam Clay Model Parameters

General Plasticity

ρ (kg/m3) 1923 λ 0.174
k (m/s) 2.5 × 10−8 Stress ratio, M 1.5
γw (kN/m3) 9.81 Initial yield surface
e0 0.889 size = p′

0/2 (kPa) 103
Elasticity Wet yield surface size 1

κ 0.026 Flow stress rate 1
ν 0.28

0.6 m thick. Each embankment layer is constructed in a two-day period, during
which consolidation of the clay layer takes place. The total construction time is six
days. Assume that the embankment material is linear elastic with ρ = 1923 kg/m3,
E = 478 kPa, ν = 0.3, k = 0.1 m/s, and e0 = 1.5. Assume that the clay layer is
elastoplastic, obeying the extended Cam clay model (Chapter 2). The Cam clay
model parameters for the clay layer are given in Table 4.5.

SOLUTION(filename: Chapter4 Example7.cae): A finite element mesh (Fig-
ure 4.23), is constructed to simulate the sequential construction procedure of the
embankment and to calculate the resulting consolidation settlements in the clay
layer. The mesh includes half of the geometry because of symmetry. The mesh
consists of one part that includes the clay layer and the three embankment layers.
In the first calculation step, the embankment is removed from the finite element
mesh. Then the embankment layers are added, layer by layer, in subsequent calcu-
lation steps. When an embankment layer is added, it is situated on the deformed
layer that was added earlier. The new layer is assumed to be strain-free at the time
of construction.

Initially, the clay layer is constructed in one calculation step (step 1) and its
effective self-weight is applied using the “body-force” option. The top surface of the
clay layer is assumed to be permeable. The clay layer is assumed to be elastoplastic,
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obeying the modified Cam clay model. Using such a model is essential for this
class of analysis because we are concerned with the ability of the clay layer to
withstand the stresses caused by the sequential construction of the embankment.
A model like this one can detect failure within the clay layer during and after
construction. During step 1, a “geostatic” command is invoked to make sure that
equilibrium is satisfied within the clay layer. The geostatic option makes sure that
the initial stress condition in any element within the clay layer falls within the
initial yield surface of the Cam clay model.

Next, the first embankment layer is constructed on top of the clay layer in a
separate calculation step (step 2). The self-weight of the first embankment layer is
gradually applied, using the “body-force” option, in a two-day period. Now, it is
important to change the hydraulic boundary condition at the interface between the
clay layer and the first embankment layer. As you recall, in step 1 the top surface of
the clay layer was assumed to be permeable. In the present step 2, we will need to
make the permeable boundary condition inactive only at the interface between the
clay layer and the first embankment layer. If we don’t, the old boundary condition
will act as a drain between the clay layer and the embankment. Further, we need
to apply a permeable boundary condition on top of the first embankment layer and
also on its sloping face. This will allow the excess pore pressure to drain during the
two-day period. Note that the embankment soil is assumed to be more permeable
than the underlying clay layer.

In step 3 we construct the second embankment layer in the manner described
above. Again, we will need to make the permeable boundary condition at the
interface between the first and second embankment layers inactive. Also, we need
to apply a permeable boundary condition on top of the second embankment layer
and on its sloping face. In step 4 we construct the third (last) embankment layer
following the exact procedure for layer 2. Step 5 is a consolidation step with a
duration of 200 days.

Figure 4.24 shows the time history of the settlements under the center of the
embankment (top of the clay layer). Note that the consolidation settlements started
immediately when the first embankment layer was constructed. The effect of

0.1 1 10 100 1000

0

25

50

75

100

Time (day)

Se
ttl

em
en

t (
m

m
)

FIGURE 4.24 Calculated consolidation settlements under the center of an embankment.
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sequential construction on consolidation settlements can be noted in the figure. No
comparison with analytical solutions is possible in this case since such solutions
are nonexistent due to the complexity of the problem (two-dimensional consoli-
dation, sequential loading, with non-uniformly distributed embankment loading).
Nevertheless, readers are encouraged to calculate the consolidation settlements at
the center of the embankment using Terzaghi’s one-dimensional consolidation the-
ory. That should yield a rough estimate of consolidation settlements that can be
compared with the finite element solution presented here. Figure 4.25 shows the
time history of excess pore pressure at the midpoint of the clay layer under the cen-
ter of the embankment. The figure shows how the excess pore pressure increases
in steps as the embankment is constructed. Note how the excess pore pressure
dissipates gradually, after the end of construction, until the consolidation process
is completed.

Figures 4.26 shows the contours of excess pore water pressures as they develop
and dissipate during and after construction for up to 15 days. Figure 4.27 shows
the distribution of shear strains in the clay layer at the end of construction of
the embankment. The maximum strains are concentrated under the edge of the
embankment. These strains are within acceptable limits and failure did not occur
anywhere within the clay layer. Note that failure is most likely to occur during
construction or at the end of construction because loads are applied rapidly and
the excess pore pressures substantially increase, due to this near-undrained type
of loading, thus decreasing the effective stresses within the clay layer. As you
know, according to the effective stress principle, the strength of soil decreases as
the effective stresses decrease, so the clay layer will be most vulnerable to failure
during construction or at the end of construction.

Example 4.8 Consolidation of a Thick Clay Layer with Strip Loading A 6-m-
thick clay layer drained at the top and bottom is subjected to a 3-m-wide strip load
of 100 kPa, as shown in Figure 4.28. The load is applied suddenly. The 1-m-thick
sand layer can be assumed linear elastic with E = 13,780 kPa and ν = 0.3. The
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FIGURE 4.25 Calculated excess pore pressure in the middle of a clay layer under the
center of an embankment.



FINITE ELEMENT ANALYSIS OF CONSOLIDATION PROBLEMS 153

(a)

(b)

(c)

(d)

FIGURE 4.26 Distribution of pore pressure at different elapsed times: (a) end of con-
struction of layer 1: elapsed time, 2 days; (b) end of construction of layer 2: elapsed time,
4 days; (c) end of construction of layer 3: elapsed time, 6 days; (d) elapsed time, 15 days.
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FIGURE 4.27 Distribution of shear strains at the end of construction of layer 3: elapsed
time, 6 days.

3 m13.5 m 13.5 m

100 kPa

1 m

6 m7 m

FIGURE 4.28 Finite element discretization: strip load on a clay foundation.

TABLE 4.6 Cam Clay Model Parameters

Stress
Sub- Thickness σ′

0 σ′
c Ratio, k

layer (m) e0 (kPa) (kPa) λ κ M (m/s)

1 1 1.42 13.785 36.76 0.1174 0.01 1.5 6 × 10−12

2 1 1.37 22.975 55.14 0.1174 0.01 1.5 6 × 10−12

3 1 1.34 32.165 73.52 0.1174 0.01 1.5 6 × 10−12

4 1 1.31 41.355 91.9 0.1174 0.01 1.5 6 × 10−12

5 1 1.29 50.545 110.28 0.1174 0.01 1.5 6 × 10−12

6 1 1.27 59.735 128.66 0.1174 0.01 1.5 6 × 10−12

clay can be assumed elastoplastic, obeying the extended Cam clay model. The clay
layer is divided into six equal sublayers. The Cam clay model parameters for each
clay sublayer are given in Table 4.6. The table also gives the in situ stress and the
preconsolidation stress for each sublayer. Calculate the consolidation settlement
at the center of the loaded strip area with respect to time using a finite element
consolidation program.
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SOLUTION(filename: Chapter4 Example8.cae): As you know, the parameter κ

defines the elastic behavior of the soil in the Cam clay model, and it is related to
the swelling index through the equation: κ = Cs /2.3. The parameter λ is related to
the compression index through λ = Cc/2.3. The strength parameter M is related
to the internal friction angle of the soil, φ′, as follows:

M = 6 sin φ′

3 − sin φ′

It is a good idea to solve the problem analytically, if possible, before seeking a
numerical solution. As indicated in Table 4.6, the six clay sublayers are overconsol-
idated. We can use (4.11) or (4.12) to calculate the ultimate consolidation settlement
of each sublayer. The choice of (4.11) or (4.12) depends on the stress condition in
each sublayer as discussed in Section 4.3. The initial condition of a clay sublayer
is fully defined by its in situ vertical effective stress σ′

0 and its in situ void ratio
e0. All clay sublayers have a compression index Cc equal to 2.3λ = 0.27 and a
swelling index Cs equal to 2.3κ = 0.023. A spreadsheet was used to do the settle-
ment calculations. A summary of the spreadsheet calculations is given in Table 4.7.
The ultimate consolidation settlement is calculated to be 91 mm.

In the Cam clay model, the yield surface size is fully described by the parameter
p′ = (σ′

1 + 2σ′
3)/3. The evolution of the yield surface is governed by the volumetric

plastic strain ε
p

vol, which is a function of p′. The relationship between ε
p

vol and p′
can be deduced easily from an e–log σ′

v line. The consolidation curve (the e–log σ′
v

line) is defined completely by its slope Cc (= 2.3λ) and the initial conditions σ′
0

and e0. Note that λ, σ′
0 and e0 are part of the input parameters required in the finite

element program used herein. Also, the preconsolidation pressure, σ′
c, is a required

parameter (Table 4.6). This parameter specifies the size of the initial yield surface
of the Cam clay model.

A two-dimensional plane strain finite element mesh was established as shown
in Figure 4.28. The clay layer is divided into six sublayers. Each sublayer has a
different set of material parameters, as shown in Table 4.6. A reduced-integration
plane strain element with pore pressure is used in this analysis.

TABLE 4.7 Ultimate Consolidation Settlement Calculations

σ′
0+

Sub H Depth σ′
0 σ′

c �σ′ �σ′ Sc Sc

layer (m) e0 (m) (kPa) (kPa) (kPa) (kPa) Equation (m) (mm)

1 1 1.42 1.5 13.785 36.76 81.8 95.585 (4.12) 0.050352 50.35
2 1 1.37 2.5 22.975 55.14 62 84.975 (4.12) 0.025088 25.08
3 1 1.34 3.5 32.165 73.52 49.4 81.565 (4.12) 0.008733 8.73
4 1 1.31 4.5 41.355 91.9 39.6 80.955 (4.11) 0.002905 2.90
5 1 1.29 5.5 50.545 110.28 33 83.545 (4.11) 0.002192 2.19
6 1 1.27 6.5 59.735 128.66 28.6 88.335 (4.11) 0.001721 1.72

90.97
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The boundary conditions of the finite element mesh shown in Figure 4.28 are as
follows. On the bottom side, the vertical and horizontal components of displacement
are fixed (ux = uz = 0), and on the left- and right-hand sides, the horizontal compo-
nent of displacement is fixed (ux = 0). Note that the entire geometry is considered
in this problem (not taking advantage of symmetry). On the top surface a uniform
downward strip load of 100 kPa is applied suddenly. During load application the top
and bottom surfaces are made impervious; thereafter, perfect drainage is assumed so
that the excess pore pressure is always zero on these surfaces (two-way drainage).

The problem is run in three steps. The first step is a single increment of analysis
with no drainage allowed across the top and bottom surfaces. In this step, the
effective self-weight is applied. The initial stress conditions indicated in Table 4.6
are also applied in this step. During this step, the “geostatic” command is invoked
to make sure that equilibrium is satisfied within the clay layer. The geostatic option
makes sure that the initial stress condition in any element within the clay specimen
falls within the initial yield surface of the Cam clay model. In step 2, the 100-kPa
strip load is applied and a nonuniform pore pressure is generated throughout the clay
layer, especially in the vicinity of the applied load. At that stage, the applied stress
is carried totally by the pore water, u; no stress is carried by the soil skeleton. In
step 3, the hydraulic boundary condition of the top and bottom surfaces is changed
to a pervious boundary condition having u = 0, and the actual consolidation is
performed using automatic time stepping. The durations of the three steps are 1,
10−5 (sudden), and 109 seconds (30 years).

The calculated time history of the vertical settlement is shown in Figure 4.29,
where it is compared with the ultimate consolidation settlement obtained analyti-
cally. There is a very significant difference between the theoretical solution and the
finite element solution. The difference is attributed primarily to the fact that this
problem is a two-dimensional consolidation problem; the one-dimensional analyt-
ical solution [equations (4.11) and (4.12)] yields only a rough approximation of
ultimate consolidation settlements. Another cause of this difference is the assump-
tion of soil homogeneity and linear elasticity when calculating �σ′ at the center of
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FIGURE 4.29 Calculated consolidation settlements under the center of a strip load.
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each clay sublayer to be used in the analytical solution. In reality, the soil in this
example is heterogeneous and inelastic: It consists of a layer of sand and a thick
elastoplastic clay layer with parameters that vary with depth and that is considered
in the finite element solution.

PROBLEMS

4.1 A soil profile is shown in Figure 4.30. A uniformly distributed load, q =
200 kPa, is applied at the ground surface. Calculate the primary consol-
idation settlement of the normally consolidated clay layer. Assume the
following: The thickness of the top sand layer is 1 m. The thickness of the
clay layer is 3 m. For sand, γdry = 15 kN/m3. For clay, γsat = 19 kN/m3,
Cc = 0.27, Cv = 3.0 × 10−6 m2/min, and k = 4.37 × 10−9 m/min.

γw

Water Level

q
Ground-
water
Table Sand Layer

Sand Layer

Clay Layer

u
h =

Standpipe

FIGURE 4.30

4.2 Refer to Figure 4.30. Calculate the height of the water level in the piezometer
immediately after applying the load q = 200 kPa on top of the sand layer.
How long will it take for h to become zero? Note that the piezometer tip is
located at the center of the clay layer.

4.3 Refer to Figure 4.30. How long will it take for 70% primary consolidation
to take place (for the entire clay layer)?

4.4 Use the finite element method to solve Problems 4.1, 4.2, and 4.3. Assume
that both sand and clay are linear elastic. Esand = 7 × 104 kN/m2, νsand =
0.3, Eclay = 5 × 103 kN/m2, and νclay = 0.3. Compare your finite element
solutions with the analytical solutions. (You can prepare your own data file,
or you can modify the data file of Example 4.2.)

4.5 A 2-m-thick clay layer with two different drainage conditions (case A and
case B) is shown in Figure 4.31. A uniformly distributed load, q = 500 kPa,
is applied at the ground surface. Calculate the primary consolidation settle-
ment of the normally consolidated clay layer for the two cases. Which case
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has more settlement? Assume the following: For sand, γsat = 18 kN/m3. For
clay, γsat = 19 kN/m3, Cc = 0.27, Cv = 3 × 10−6 m2/min, and k = 4.37 ×
10−9 m/min.

Sand

Sand

NC Clay

Sand

H = 2 m

Rock (Impervious)

Case A Case B

H = 2 m

q q

1 m1 m

GWT GWT

NC Clay 

FIGURE 4.31

4.6 Refer to Figure 4.31. How long will it take for 50% primary consolidation to
take place for cases A and B? Derive an expression relating t50 for case A to
t50 for case B. (Note: t50 is the time required to achieve 50% consolidation.)

4.7 Use the finite element method to solve Problems 4.5 and 4.6. Assume that
both sand and clay are linear elastic. Esand = 7 × 104 kN/m2, νsand = 0.3,
Eclay = 5 × 103 kN/m2, and νclay = 0.28. Compare your finite element solu-
tions with the analytical solutions. (You can prepare your own data file, or
you can modify the data file of Example 4.3.)

γsat = 18 kN/m3

γdry = 15 kN/m3

k = 1x10−2 m/min
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3 m
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3 m 3 m
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z

x

Cv = 3.0 x 10−6 m2/min, k =  4.37 x 10−9m/min

FIGURE 4.32
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4.8 A uniformly distributed load, q = 60 kPa, is applied at the top of the base-
ment floor as shown in Figure 4.32. The basement is 6 m wide and is very
long in the y-direction (plane strain condition). Calculate the primary con-
solidation settlement of the normally consolidated clay layer under the center
of the basement.

4.9 Use the finite element method to solve Problem 4.8. Assume that both
sand and clay are linear elastic. Esand = 7 × 104 kN/m2, νsand = 0.3, Eclay =
5 × 103 kN/m2, and νclay = 0.28. Other parameter are given in Figure 4.32.
Compare your finite element solution with the analytical solution.

4.10 A nonuniformly distributed load is applied at the top of the basement floor
as shown in Figure 4.33. The basement is 6 m wide and is very long in the
y-direction (plane strain condition). Assuming a triangular load distribution,
calculate the primary consolidation settlement of the normally consolidated
clay layer. Compare the consolidation settlement under the center and under
the corner of the basement concrete slab. Use the finite element method to
solve this problem. Assume that both sand and clay are linear elastic. Esand =
7 × 104 kN/m2, νsand = 0.3, Eclay = 5 × 103 kN/m2, and νclay = 0.28. Other
parameters are given in Figure 4.33.
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FIGURE 4.33

4.11 Calculate the consolidation settlement under the center of a 1.5-m-high
embankment founded on a 1-m-thick sand layer underlain by a 6-m-thick
overconsolidated clay layer. An impermeable layer of rock lies below the
clay layer. The groundwater table is coincident with the top surface of the
clay layer as indicated in Figure 4.34. The embankment is constructed in
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three equal layers each 0.5 m thick. Each embankment layer is constructed
in a 7-day period, during which some consolidation of the clay layer takes
place. The total construction time is 21 days. Assume that the embank-
ment material is linear elastic with ρ = 1923 kg/m3, E = 478 kPa, ν = 0.3,
k = 0.1 m/s, and e0 = 1.5. Assume that the clay layer is elastoplastic, obey-
ing the extended Cam clay model. The Cam clay model parameters for the
clay layer are given in Table 4.8. Also, assume that the clay layer has a
preconsolidation pressure of 206 kPa (i.e., the initial yield surface size is
103 kPa).

GWT1 m

6 m

1.5 m

Clay

Sand

Rock

3 m3 m 6 m

FIGURE 4.34

TABLE 4.8 Cam Clay Model Parameters

General Plasticity

ρ (kg/m3) 1923 λ 0.1174
k (m/sec) 2.5 × 10−8 Stress ratio, M 1
γw (kN/m3) 9.81 Initial yield surface
e0 0.889 size = p′

0/2 (kPa) 103
Elasticity Wet yield surface size 1

κ 0.026 Flow stress rate 1
ν 0.28

GWT1 m

6 m

1.5 m

Clay

Sand

Rock

3 m3 m 6 m 21.5 11

0.6 m

Excavation

FIGURE 4.35
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4.12 A year after the end of construction of the embankment (refer to Prob-
lem 4.11), the city of Milwaukee decided to make an excavation parallel to
the embankment as shown in Figure 4.35. The depth of the excavation is
0.6 m. The excavation was dug in two stages, each involving the removal
of 0.3 m of sand. Evaluate the effect of the excavation on the deformation
performance of the embankment for one year following the excavation. Use
the soil parameters given in Problem 4.11.



CHAPTER 5

SHEAR STRENGTH OF SOIL

5.1 INTRODUCTION

The shear strength of soil is the shear resistance offered by the soil to overcome
applied shear stresses. Shear strength is to soil as tensile strength to steel. When
you design a steel truss for a bridge, for example, you have to make sure that
the tensile stress in any truss element is less than the tensile strength of steel, with
some safety factor. Similarly, in soil mechanics one has to make sure that the shear
stress in any soil element underlying a shallow foundation, for example, is less than
the shear strength of that particular soil, with some safety factor.

In soils the shear strength, τf , is a function of the applied normal effective stress,
σ′. The Mohr–Coulomb failure criterion (discussed in the next section) provides a
relationship between the two:

τf = c′ + σ′ tan φ′ (5.1)

where c′ is the cohesion intercept of the soil and φ′ is the internal friction angle of
the soil. These two parameters are termed the strength parameters of a soil. They
can be obtained from laboratory and field tests.

Consider the stability of the soil slope shown in Figure 5.1. Soil slopes usually
fail in the manner shown in the figure—at failure, there exists a failure surface
along which the applied shear stress is equal to the shear strength of the soil. Let’s
assume that this particular soil has c′ = 10 kPa and φ′ = 30◦. Also, let’s assume
that the applied normal effective stress and shear stress at point A are σ′ = 110 kPa
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Failure Surface

A
τ τ

σ′

FIGURE 5.1 Shear strength concept.

and τ = 40 kPa, respectively. The shear strength offered by the soil at point A can
be calculated using (5.1):

τf = c′ + σ′ tan φ′ = 10 + 110 tan 30◦ = 73.5 kPa

Note that at point A the applied shear stress τ is 40 kPa, which is less than the
shear strength τf = 73.5 kPa at the same point. This means that point A is not on
the verge of failure. The soil at point A will fail only when the applied shear stress
is equal to the shear strength.

The shear strength of soil has to be determined accurately because it is crucial
for the design of many geotechnical structures, such as natural and human-made
slopes, retaining walls, and foundations (both shallow and deep). The shear strength
parameters can be measured in the field using the vane shear test, for example. They
can be obtained from correlations with the standard number N obtained from the
standard penetration test, or from correlations with the cone resistance obtained
from the cone penetration test. The shear strength parameters can also be measured
in the laboratory using direct shear and/or triaxial compression testing methods
on undisturbed or reconstituted soil samples. These testing methods are described
next. Other laboratory shear tests are available primarily for research purposes,
including simple shear tests and hollow cylinder triaxial tests.

5.2 DIRECT SHEAR TEST

To measure the frictional resistance between wood and steel, a wooden block and
a steel block can be stacked vertically and placed on a rough surface as shown in
Figure 5.2. A constant vertical load F is applied on top of the steel block. Then a
gradually increasing lateral load is applied to the steel block until it starts sliding
against the wooden block. Sliding indicates that shear failure has occurred between
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FIGURE 5.2 Shear test concept.

the two blocks. Thus, the applied shear stress at failure (τf = Tf /A) is equal to
the shear resistance (or shear strength) between the blocks, where Tf is the applied
lateral force at failure and A is the cross-sectional area of the block. In reference
to Figure 5.2b, the friction factor between the two materials can be calculated as
µ = tanφ = τf /σ, where, φ is the friction angle between the two blocks and σ

is the normal stress applied (= F/A). In this testing arrangement, termed direct
shear, the shear strength at a predetermined shear plane is measured at a constant
normal stress.

The direct shear test for soils uses the same concept as that illustrated above.
The soil is placed in a “split” shear box that consists of two halves, as shown
in Figure 5.3. The box has a square cross section and can accommodate a soil

T
Soil

Actuator

Actuator

Vertical
Displacement

Shear
Displacement

F = constant

σ = F/A

τ = T/A

Shear Box

Displacement
Transducer

Disp. Transducer

FIGURE 5.3 Direct shear test apparatus.
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specimen 10 cm × 10 cm in plane and 2.5 cm in height. The upper half of the
shear box is not allowed to move laterally, whereas the bottom half can slide
laterally by the action of a horizontal actuator. After placing the soil inside the
box, a loading plate is seated on top of the soil and a vertical load is applied
using a vertical actuator. A gradually increasing lateral displacement (at a constant
rate) is then applied to the bottom half of the box, via the horizontal actuator, to
generate shear stresses within the soil. The shear force, T , is measured using a load
cell attached to the piston of the horizontal actuator. The horizontal displacement
(shear displacement) of the bottom half of the shear box is measured during shearing
using a horizontal displacement transducer. Also, the vertical displacement of the
loading plate is measured during shearing using a vertical displacement transducer.
Figure 5.4 is a photo of a direct shear apparatus.

The results of a direct shear test are plotted in the shear displacement versus shear
stress plane such as the one shown in Figure 5.5a. The vertical displacement of
the loading plate is plotted against the shear displacement as shown in Figure 5.5b.
The test results shown in Figure 5.5a and 5.5b are typical for loose sands. Note
that the shear stress is calculated by dividing the measured shear force by the
cross-sectional area of the soil specimen. Figure 5.5a shows that the shear stress
increases in a nonlinear manner as the shear displacement increases. The shear

FIGURE 5.4 Direct shear test apparatus. (Courtesy of Geocomp)
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FIGURE 5.5 Typical direct shear test results on (a, b) loose sand and (c, d) dense sand.

stress approaches failure at τ = τf , where τf is the shear strength of the soil.
Figure 5.5b shows a downward displacement of the loading plate, indicating soil
compression. Loose sand consists of loosely packed grains with large voids in
between. During shearing, some of the voids in the shear zone and its vicinity will
collapse, causing the soil specimen to compress (downward plate displacement).

The behavior of dense sand during shearing is quite different from that of loose
sand even though the two sands are assumed to be identical in terms of their
gradation and specific gravity—they differ only in relative density. In the shear
displacement versus shear stress plane (Figure 5.5c) the dense sand exhibits greater
strength, or peak strength, at an early stage during shearing. After reaching peak
strength, the shear stress decreases as the shear displacement increases until reach-
ing an ultimate strength that is approximately the same as the ultimate strength
of the loose sand (Figure 5.5a). Figure 5.5d shows the direct shear test results for
dense sand in the shear displacement versus vertical displacement plane. In this
figure, downward displacement of the loading plate indicates soil compression,
and upward displacement of the plate indicates soil expansion (dilation). A pecu-
liar characteristic is noted in the figure. At an early stage of shearing, the sand
compresses slightly and then starts to dilate until a later stage of shearing, when
it levels out as shown in the figure. Dense sand consists of densely packed grains
with small voids in between. During shearing, some of the grains will slide and roll
on top of other densely packed particles in the shear zone and its vicinity, causing
the soil specimen to dilate (upward plate displacement).
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The results of a direct shear test provide the shear strength (τf ) of the soil
at a specific normal stress (σ′). The direct shear test is repeated several times on
identical soil specimens using different normal stresses. Typical direct shear test
results for sand using three different normal stresses are shown in Figure 5.6a. The
shear strength of the soil at different normal stresses can be determined from the
figure as indicated by points 1, 2, and 3. The at-failure tests results (points 1, 2,

Shear Displacement (mm)

τ 
(k

Pa
)

1

2

3

(a)

σ′ = 10 kPa

σ′= 30 kPa

σ′ = 50 kPa

0
0

10

20

30

40

50

1 2 3 4 5 6

φ′ ≈ 37°

σ′ (kPa)

τ 
(k

Pa
)

τ =
σ′ ta

nφ′

Mohr–Coulomb Failure Criterion for Sand

1

2

3

(b)

0

10

20

30

40

50

0 10 20 30 40 50 60

FIGURE 5.6 Determination of the Mohr–Coulomb failure criterion for sand (direct shear
test).
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and 3) are presented in the normal stress versus shear stress plane in Figure 5.6b.
The three data points in Figure 5.6b are best fitted with a straight line. This straight
line is the Mohr–Coulomb failure criterion. The slope of this line is the internal
friction angle of the soil, φ′, and its intercept with the shear stress axis is the
cohesion intercept, c′. The parameters c′ and φ′ are the strength parameters of the
soil. They are unique parameters for a given soil. For a sandy soil c′ is zero, that
is, the Mohr–Coulomb failure criterion passes through the origin, so τf = σ′ tan φ′.
In Figure 5.6b the internal friction angle can be calculated from the slope of the
Mohr-Coulomb failure criterion: φ′ = tan−1(τf /σ′) ≈ 37◦.

Figure 5.7a presents typical direct shear test results for clay under three differ-
ent normal stresses. The Mohr–Coulomb failure criterion for this clay is shown in
Figure 5.7b. The figure shows that this soil has a cohesion intercept of approxi-
mately 9 kPa and an internal friction angle of approximately 26.5◦. With the help
of Figure 5.7b, one can define the cohesion intercept (or cohesion) as the shear
strength of the soil at zero normal stress (or zero confining pressure). This means
that clays have some shear strength even when they are not subjected to confining
pressure. It also means that sands do not have any shear strength without confining
pressure. That is why we cannot make shapes out of dry sand, although we can
certainly make shapes out of clay. For this reason sands and gravels are called
cohesionless, whereas clays are called cohesive.

Note that we used effective stresses in the discussion above when describing the
Mohr–Coulomb failure criterion and the shear strength parameters of the soil. This
is because the shear strength of soil is dependent on effective stresses rather than
total stresses (recall the effective-stress principle). Also, this means that when we
conduct a direct shear test on wet or saturated soils, we have to facilitate drainage
while shearing the soil specimen to prevent the development of excess pore water
pressures in the soil. When the soil is saturated, the shear stress must be applied
very slowly to prevent the development of excess pore water pressure. That way
the total stress is equal to the effective stress because the pore water pressure is
kept equal to zero: σ′ = σ − u = σ − 0 = σ.

When measuring the shear strength of a soil using a direct shear test, one needs
to duplicate the field conditions of the soil being tested. Take, for example, the
case of the slope shown in Figure 5.1. To measure the shear strength at point A,
we can estimate the normal stress σ′ at that point. This requires knowledge of the
in situ unit weight of the soil and the location of the groundwater table. In the lab-
oratory we can reconstitute a soil specimen in the direct shear box, aiming for the
same in situ soil density. The soil sample can be submerged in a water basin (not
shown in Figure 5.3) to simulate field conditions. A constant vertical stress equal
to the normal stress σ′ calculated at point A is then applied to the soil specimen.
The shearing stage should not start until equilibrium within the soil specimen is
achieved. This means that if the soil is a clayey soil, we have to wait until the
excess pore water pressure generated as a result of stress application is dissipated.
Shearing can then be applied until failure. The shear stress applied at failure should
reflect the true shear strength of the soil at point A.
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FIGURE 5.7 Determination of the Mohr–Coulomb failure criterion for clay (direct shear
test).

Example 5.1 A dry sand sample is subjected to a normal stress σ′ = 20 kPa in a
direct shear test (Figure 5.3). Calculate the shear force at failure if the soil sample
is 10 cm × 10 cm in plane and 2.5 in height. The strength parameters of the sand
are c′ = 0 and φ′ = 38◦.
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σ′ = 1000 kPa

τ = 550 kPa

Rocky Wedge

Inclined Plane

FIGURE 5.8 Is the wedge going to slide?

SOLUTION: From the Mohr–Coulomb failure criterion we can calculate the shear
strength of the sand at σ′ = 20 kPa:

τf = c′ + σ′ tan φ′ = 0 + 20 × tan 38◦ = 15.6 kPa

At failure, the applied shear stress is equal to the shear strength of the soil (i.e.,
τ = τf ); therefore, the shear force at failure is:

T = τ × A = 15.6 × 0.1 × 0.1 = 0.156 kN = 156 N.

Example 5.2 An intact rocky wedge is situated on an inclined plane as shown in
Figure 5.8. Due to the self-weight of the wedge, a normal stress of 1000 kPa and
a shear stress of 550 kPa are applied to the inclined plane. Determine the safety of
the wedge against sliding given that the friction angle between the wedge and the
inclined plane is 30◦.

SOLUTION: The shear strength offered at the wedge–plane interface can be cal-
culated using the Mohr–Coulomb failure criterion with σ′ = 1000 kPa:

τf = c′ + σ′ tan φ′ = 0 + 1000 × tan 30◦ = 577.35 kPa

To avoid sliding, the applied shear stress must be less than the shear strength
offered by the wedge–plane interface (i.e., τ < τf ). Luckily, τ is 550 kPa, which
is smaller than τf = 577.35 kPa. Therefore, the wedge is safe against sliding.

5.3 TRIAXIAL COMPRESSION TEST

The triaxial compression test is used to determine the shear strength of soil and to
determine the stress–strain behavior of the soil under different confining pressures.
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The test involves a cylindrical soil sample that is subjected to a uniform confining
pressure from all sides and then subjected to an additional vertical load until failure.

Figure 5.9 shows the triaxial test apparatus schematically, and Figure 5.10 is a
photo of the apparatus. The cylindrical soil sample can have different dimensions.
A typical triaxial soil specimen is 5 cm in diameter and 15 cm in height. The
sample is situated on top of the pedestal that is part of the base of the triaxial
chamber, as shown in Figure 5.9. A loading plate is then placed on top of the
specimen. The pedestal, the soil specimen, and the top loading plate are carefully
enclosed in a thin rubber membrane. O-rings are used to prevent the confining fluid
from entering the soil specimen. Finally, the triaxial chamber is positioned on top
of the base, the loading ram is lowered to the position shown in Figure 5.9, and
the triaxial chamber is filled with water.

As noted in Figure 5.9, two drainage tubes connect the top and bottom of the
soil specimen to the outside of the triaxial chamber. These tubes have valves that
are used to control drainage into the soil specimen. A third tube leads to the space
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FIGURE 5.9 Triaxial test apparatus.



172 SHEAR STRENGTH OF SOIL

FIGURE 5.10 Triaxial test apparatus. (Courtesy of Geocomp)

inside the triaxial chamber, which is usually filled with water. This tube is used to
pressurize the confining fluid (water) using pressurized air and a pressure regulator.

There are three types of triaxial compression tests: CD, CU, and UU. Each
triaxial test consists of two stages: Stage I is the conditioning stage, during which
the initial stress condition of the soil specimen is established; stage II is the shearing
stage, during which a deviator stress is applied until failure. The designation of a
triaxial test consists of two letters, the first letter describes stage I and the second
describes stage II. Stage I can be either consolidated (C) or unconsolidated (U),
and stage II can be either drained (D) or undrained (U). A triaxial CD test means
that the soil specimen is allowed to consolidate in stage I of the triaxial test, and
during stage II the specimen is allowed to drain while being sheared. On the other
hand, a triaxial CU test means that the soil specimen is allowed to consolidate
in stage I, and during stage II the specimen is not allowed to drain while being
sheared. Finally, the UU test means that the specimen is not allowed to consolidate
in stage I and is not allowed to drain during shearing.

5.3.1 Consolidated–Drained Triaxial Test

The consolidated–drained (CD) triaxial test is used to obtain the effective strength
parameters of soils. First, a soil specimen is saturated by circulating deaired water
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through the specimen, from bottom to top, utilizing the two drainage tubes shown
in Figure 5.9. After the specimen is fully saturated, the triaxial test is done in
two stages: a stress initialization stage and a shearing stage. In the first stage a
confining pressure is applied via the confining fluid. Because the soil specimen is
fully saturated, excess pore water pressure will be generated (≈ confining pressure).
The soil specimen is allowed to consolidate by opening the two drainage valves
throughout this stage. That will allow the excess pore water pressure to dissipate
gradually and the specimen to consolidate. The volume of the dissipated water can
be measured using a graduated flask. The volume of the dissipated water is equal
to the volume change of the specimen because the specimen is fully saturated. The
volumetric strain can be calculated by dividing the volume change by the initial
volume of the specimen. The consolidation curve for this stage can be plotted in
the time versus volumetric strain (εv) plane, as shown in Figure 5.11.

In the shearing stage of the CD test a deviator stress �σd = σ1 − σ3 is applied
very slowly while the drainage valves are opened, to ensure that no excess pore
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FIGURE 5.11 Stage I of a consolidated drained triaxial test: consolidation stage.
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water pressure is generated. Consequently, the effective stresses are equal to the
total stresses during this stage of the CD test. Because of its stringent loading
requirements, the CD test may take days to carry out, making it an expensive test.
Figure 5.12a shows stress–strain behavior typical of loose sand and normally con-
solidated clay. Note that εa is the axial strain and σ1 − σ3 is the deviator stress.
The soil shows smooth nonlinear stress–stress behavior reaching an ultimate shear
strength (σ1 − σ3)f . Figure 5.12b shows the deformation behavior in the axial strain
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FIGURE 5.12 Stage II of a consolidated drained triaxial test: shearing stage (a, b) loose
sand; (c, d) dense sand.
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(εa) versus volumetric strain (εv) plane typical of loose sand and normally consol-
idated clay. In this figure the soil compresses as the shearing stress is increased.
When the ultimate shear strength is approached, the curve levels out, indicating
that the volumetric strain is constant (i.e., no further volume change). From the
measured deviator stress at failure (σ1 − σ3)f , one can plot Mohr’s circle, which
describes the stress state of the soil specimen at failure. Such a plot is shown in
Figure 5.13. The Mohr–Coulomb failure criterion can be obtained by drawing a
line that is tangent to Mohr’s circle and passing through the origin. This is appli-
cable to sands and normally consolidated clays since these soils have c′ = 0. The
slope of the Mohr–Coulomb failure criterion is the effective (or drained) friction
angle φ′ of the soil.

Figure 5.12c shows typical stress–strain behavior of dense sand and overcon-
solidated clay in the axial strain (εa) versus deviator stress plane. The soil shows
nonlinear stress–stress behavior reaching a peak shear strength (σ1 − σ3)f at an
early stage of shearing. After the peak strength is reached, a sharp decrease in
strength is noted. Then the stress–strain curve levels out, approaching an ultimate
strength (σ1 − σ3)ult . Note that this ultimate strength is the same as the ultimate
strength of the loose sand if the two sands were identical (not in terms of their
relative density). Figure 5.12d shows typical deformation behavior of dense sand
and overconsolidated clay in the axial strain (εa) versus volumetric strain (εv)

plane. Initially, the soil compresses as the shearing stress is increased. But shortly

τ = σ′ tan φ′
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FIGURE 5.13 Determination of the Mohr–Coulomb failure criterion for sand (CD triaxial
test).
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after that the soil starts expanding (dilating) as the axial strain increases. When
the ultimate shear strength is approached, the curve levels out, indicating that the
volumetric strain is constant.

We need only one CD test to determine the strength parameters of dense sand
(because c′ = 0). From the peak deviator stress measured (σ1 − σ3)f , we can plot
Mohr’s circle, which describes the stress state of the soil specimen at failure as
shown in Figure 5.13. The Mohr–Coulomb failure criterion can be obtained by
drawing a line that is tangent to Mohr’s circle and passing through the origin. The
slope of the Mohr–Coulomb failure criterion is the effective (or drained) friction
angle φ′ of the soil.

For overconsolidated clays the cohesion intercept, c′, is not equal to zero. There-
fore, we will need to have the results of at least two CD triaxial tests on two
identical specimens subjected to two different confining pressures. From the mea-
sured peak deviator stress (σ1 − σ3)f of these tests, we can plot Mohr’s circles that
describe the stress states of the soil specimens at failure, as shown in Figure 5.14.
The Mohr–Coulomb failure criterion in this case can be obtained by drawing a
line that is tangent to the two Mohr’s circles. The Mohr-Coulomb failure crite-
rion will intersect with the shear stress axis at τ = c′, as shown in Figure 5.14.
This is the effective cohesion intercept of the overconsolidated clay. The slope
of the Mohr–Coulomb failure criterion is the effective friction angle φ′ of the
overconsolidated clay.

You recall from the strength of materials laboratory that when a concrete cylin-
drical specimen was crushed between the jaws of a compression machine, there
existed a failure plane making an angle θ with the horizontal. Soils exhibit sim-
ilar behavior—they also have a failure plane that occurs at failure in a triaxial

τ = c′ + σ′ tan φ′
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FIGURE 5.14 Determination of the Mohr–Coulomb failure criterion for overconsolidated
clay (CD triaxial test).
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compression test. Let us calculate, both graphically and analytically, the orienta-
tion of the failure plane. In reference to Figure 5.13, a sandy soil will have a zero
cohesion intercept, and the Mohr–Coulomb failure criterion is tangent to Mohr’s
circle. The tangency point (point A in Figure 5.13) represents the stress state on
the failure plane at failure. The x and y coordinates of point A give, respectively,
the normal and shear stresses exerted on the failure plane. We can measure the
x and y coordinates at point A directly from the figure provided that our graph
is drawn to scale. We can determine the failure plane orientation using the pole
method. For a triaxial compression test, the pole (the origin of planes) is located
at point P in Figure 5.13. The orientation of the failure plane can be obtained by
connecting point P with point A. The orientation of the failure plane is the angle
between line PA and the horizontal. We can use a protractor to measure the angle
θ. This is the graphical solution.

The analytical solution for the angle θ can be obtained easily from Figure 5.13.
Using simple trigonometry, you can show that

θ = 45◦ + φ′

2
(5.2)

As mentioned above, the x and y coordinates of point A give, respectively, the
normal stress (σ′

A) and shear stress (τA) exerted on the failure plane at failure.
Let’s calculate those analytically. In reference to Figure 5.13 we can write

σ′
A = σ′

1 + σ′
3

2
− σ′

1 − σ′
3

2
sin φ′ (5.3)

τA = σ′
1 − σ′

3

2
cos φ′ (5.4)

The friction angle φ′ can be calculated from

sin φ′ = σ′
1 − σ′

3

σ′
1 + σ′

3

(5.5)

Example 5.3 A CD triaxial compression test was conducted on a sand specimen
using a confining pressure of 42 kPa. Failure occurred at a deviator stress of 53 kPa.
Calculate the normal and shear stresses on the failure plane at failure. Also calculate
the angle made by the failure plane with the horizontal. (a) Solve the problem
graphically and (b) confirm your solution analytically.

SOLUTION: (a) Graphical solution Given: σ′
3f = 42 kPa and (σ′

1 − σ′
3)f = 53

kPa. We need to calculate the major principal stress in order to draw Mohr’s circle:

σ′
1f = σ′

3f + 53 kPa = 42 kPa + 53 kPa = 95 kPa

The radius of Mohr’s circle is

(σ′
1 − σ′

3)f

2
= 53

2
= 26.5 kPa
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The x-coordinate of the center of Mohr’s circle is

(σ′
1 + σ′

3)f

2
= 95+42

2
= 68.5 kPa

Now we can plot Mohr’s circle with its center located at (68.5 kPa, 0) and radius
= 26.5 kPa, as shown in Figure 5.15.

Since the soil is sand, we have c′ = 0. The Mohr–Coulomb failure criterion is
drawn as a straight line passing through (0,0) and tangent to the circle as shown in
the figure. Using the same scale as that used in the drawing, we can now measure
the coordinates of the tangency point: The normal stress at point A is σ′

A ≈ 57 kPa,
and the shear stress at point A is τ′

A ≈ 26 kPa. The orientation of the failure plane
can be obtained by connecting pole P with point A. The orientation of the failure
plane is the angle between line PA and the horizontal. Using a protractor, we can
measure the angle θ ≈ 56◦.

(b) Analytical solution First, we calculate the friction angle of the sand using
(5.5):

φ′ = sin−1 σ′
1 − σ′

3

σ′
1 + σ′

3

= sin−1 53

95 + 42
= 22.75◦

Therefore,

θ = 45◦ + φ′

2
= 45◦ + 22.75◦

2
= 56.38◦
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FIGURE 5.15 Mohr’s circle for a CD triaxial test on sand.
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In reference to Figure 5.15, we can write

σ′
A = σ′

1 + σ′
3

2
− σ′

1 − σ′
3

2
sin φ′ = 95 + 42

2
− 95 − 42

2
sin 22.75◦ = 58.25 kPa

τA = σ′
1 − σ′

3

2
cos φ′ = 95 − 42

2
cos 22.75◦ = 24.44 kPa

Note that there is a relatively good agreement between the graphical and analytical
solutions. Solving problems graphically first can reveal better ways of solving them
analytically. Also, sometimes it is more efficient to solve problems graphically.

Example 5.4 Three CD triaxial compression tests were conducted on three over-
consolidated clay specimens using three confining pressures: 4, 20, and 35 kPa.
Failure occurred at the deviator stresses of 19, 36 and 54 kPa, respectively. Deter-
mine the shear strength parameters of the soil.

SOLUTION: Let’s calculate the major principal stress at failure for each test. Then
let’s determine the x-coordinate of the center of each Mohr’s circle and its radius:

σ′
3f (kPa) (σ′

1 − σ′
3)f (kPa) σ′

1f (kPa) (σ′
1 + σ′

3)f /2 (kPa) (σ′
1 − σ′

3)f /2 (kPa)
4 19 23 13.5 9.5

20 36 56 38 18
35 54 89 62 27

Using the results from the fourth and fifth columns, we can draw three Mohr’s
circles as shown in Figure 5.16. The failure envelope (Mohr–Coulomb failure crite-
rion) is then established. The friction angle and the cohesion intercept are measured
from the figure as φ′ ≈ 23◦ and c′ ≈ 5 kPa, respectively.
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FIGURE 5.16 CD triaxial compression tests on three overconsolidated clays.
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5.3.2 Consolidated–Undrained Triaxial Test

The consolidated–undrained (CU) triaxial test includes two stages: stage I, the
consolidation stage, and stage II, the shearing stage. In stage I the specimen is
consolidated under a constant confining pressure. The drainage valves are opened
to facilitate consolidation. The volume change is measured and plotted against
time as shown in Figure 5.17a. In stage II the soil specimen is sheared in an
undrained condition. The undrained condition is realized by closing the drainage
valves, thus preventing the water from flowing out of the sample or into the sample.
The undrained condition makes it possible to apply the deviator stress in a much
faster manner than in the consolidated–drained triaxial test. This makes the CU test
more economical than the CD test. During stage II there will be no volume change
since water is not allowed to leave the specimen. Therefore, the volumetric strain
(εv) is always equal to zero during this stage. Because the soil has the tendency to
compress (or dilate) during shearing, there will be increase (or decrease) in excess
pore water pressure within the saturated specimen. The excess pore water pressure
is measured using a pressure transducer connected to one of the drainage tubes.
The presence of pore water pressure indicates that the total stress is different from
the effective stress in a CU test.

(+)

(−)

εa εa

εa εa

Compression

ε v Time

(a)

(b) (d)

(c) (e)

σ1 − σ3 σ1 − σ3

(σ1 − σ3)f

(σ1 − σ3)f
(σ1 − σ3)ult

∆ud

(∆ud)f

(+)

(−)

∆ud

(∆ud)f

FIGURE 5.17 (a) Stage I (consolidation) and (b − e) stage II (shearing) of a consoli-
dated–undrained triaxial test (b, c) loose sand; (d, e) dense sand.
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Figure 5.17b shows stress–strain behavior typical of loose sand and normally
consolidated clay in the axial strain (εa) versus deviator stress plane. The soil
shows a smooth nonlinear stress–stress behavior reaching an ultimate shear strength
(σ1 − σ3)f . Figure 5.17c shows the corresponding behavior in the axial strain (εa)

versus pore water pressure (�ud) plane. In this figure the soil has a tendency
to compress as the shearing stress is increased. This causes a positive change in
pore water pressure, as shown in the figure. When the ultimate shear strength is
approached, the pore water pressure levels out, approaching its maximum value at
failure (�ud)f . From the deviator stress measured at failure (σ1 − σ3)f , one can
plot a Mohr’s circle that describes the total stress state of the soil specimen at
failure. Such a plot is shown in Figure 5.18. Knowing the value of the pore water
pressure at failure (�ud)f , one can calculate the effective principal stresses at
failure: σ′

1f = σ1f - (�ud)f and σ′
3f = σ3f - (�ud)f . The corresponding effective

Mohr’s circle is shown in Figure 5.18. Note that the two circles have the same
size and that the effective-stress Mohr’s circle can be obtained from the total stress
Mohr’s circle if the latter is shifted to the left a distance equal to (�ud)f . It follows
that there are two Mohr–Coulomb failure criteria: one for total stresses and one for
effective stresses. The slope of the effective-stress Mohr–Coulomb failure criterion
is the effective (or drained) friction angle φ′ of the soil, whereas the slope of the
total stress Mohr–Coulomb failure criterion is the consolidated–undrained friction
angle φ (without a prime) of the soil.

Figure 5.17d shows stress–strain behavior typical of dense sand and overcon-
solidated clay in the axial strain (εa) versus deviator stress plane. The soil shows
nonlinear stress–strain behavior, reaching a peak shear strength (σ1 − σ3)f at an
early stage of shearing. After the peak strength is reached, a sharp decrease in
strength is noted. Then the stress–strain curve levels out, approaching an ultimate
strength (σ1 − σ3)ult . Figure 5.17e shows the corresponding behavior in the axial

0

50

0 50 100

Effective Stress

Total Stress

Normal
Stress (kPa)

τ 
(k

Pa
)

(∆ud)f

τ = σ′ tan φ′

τ = σ tan φ

φ′

φ

σ′3 σ′1σ3 σ1

FIGURE 5.18 Total and effective-stress Mohr–Coulomb failure criteria from CU triaxial
test results: loose sand (or NC clay).
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strain (εa) versus pore water pressure (�ud) plane. Initially, the pore water pressure
increases as the shearing stress is increased. But shortly after that the pore water
pressure starts to decrease, and then becomes negative (suction), as the shearing
stress increases. When the ultimate shear strength is approached, the curve levels
out and the pore water pressure reach its maximum negative value.

We need only one CU test to determine the total and effective shear strength
parameters of a dense sand (because c = c′ = 0). From the peak deviator stress
measured (σ1 − σ3)f , we can plot the total stress Mohr’s circle that describes the
total stress state of the soil specimen at failure, as shown in Figure 5.19. Knowing
that the pore water pressure at failure is -(�ud)f , we can calculate the effective
stresses at failure and plot the effective-stress Mohr’s circle as shown in the same
figure. Note that the effective-stress Mohr’s circle has the same diameter as the total
stress Mohr’s circle. Also note that the effective-stress circle results from the total
stress circle by a shift =(�ud)f from left to right. The total stress Mohr–Coulomb
failure criterion can be obtained by drawing a line that is tangent to the total
stress Mohr’s circle and passing through the origin. The slope of the total stress
Mohr–Coulomb failure criterion is the consolidated–undrained friction angle φ of
the soil. The angle φ can be obtained as

sin φ = σ1 − σ3

σ1 + σ3
(5.6)

Also, the effective-stress Mohr–Coulomb failure criterion for dense sand can be
obtained by drawing a line tangent to the effective-stress Mohr’s circle and passing
through the origin. The slope of the effective-stress Mohr–Coulomb failure criterion
is the effective (or drained) friction angle φ′ of the soil. Equation (5.5) can be used
to calculate the angle φ′.

τ = σ′tan φ′
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FIGURE 5.19 Total and effective-stress Mohr–Coulomb failure criteria from CU triaxial
test results: dense sand.
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For overconsolidated clays, the cohesion intercept, c′, is not equal to zero. There-
fore, we will need to have the results of at least two CU triaxial tests on two identical
specimens subjected to two different confining pressures. From the measured peak
deviator stress (σ1 − σ3)f of these tests we can plot Mohr’s circles that describe
the total stress state of the soil specimens at failure as shown in Figure 5.20. The
total stress Mohr–Coulomb failure criterion in this case can be obtained by drawing
a line that is tangent to the two Mohr’s circles. The total stress Mohr–Coulomb
failure criterion will intersect with the shear stress axis at τ = c, as shown in
Figure 5.20. This is the cohesion intercept of the overconsolidated clay. The slope
of the Mohr–Coulomb failure criterion, is the consolidated-undrained friction angle
φ of the overconsolidated clay. Figure 5.20 also shows the effective-stress Mohr’s
circles for the two tests and the corresponding effective-stress Mohr-Coulomb fail-
ure criterion, from which the effective shear strength parameters c′ and φ′, can be
obtained.

Example 5.5 A consolidated–undrained triaxial test was performed on a dense
sand specimen at a confining pressure σ3 = 23 kPa. The consolidated undrained
friction angle of the sand is φ = 37.5◦, and the effective friction angle is φ′ = 30◦.
Calculate (a) the major principal stress at failure, σ1f ; (b) the minor and the major
effective principal stresses at failure, σ′

3f and σ′
1f ; and (c) the excess pore water

pressure at failure, (�ud)f . Solve the problem graphically and analytically.

SOLUTION: Graphical solution (a) As shown in Figure 5.21a, we can draw the
Mohr–Coulomb failure criteria for both total stresses and effective stresses. To do
so we need the consolidated undrained friction angle φ = 37.5◦ and the effective
friction angle φ′ = 30◦. Both criteria pass through the origin because c and c′ for
sand are equal to zero. Next, we plot the confining pressure σ3 = 23 kPa on the
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FIGURE 5.20 Total and effective-stress Mohr–Coulomb failure criteria from CU triaxial
test results: OC clay.
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FIGURE 5.21 Consolidated undrained triaxial test results of a dense sand.

normal stress axis as shown in Figure 5.21b. Now we can draw a circle (by trial and
error) that passes through σ3 = 23 kPa and touches the total stress Mohr–Coulomb
failure criterion. This is Mohr’s circle, representing the total stresses at failure. The
intersection of the circle with the horizontal axis is the major principal stress at
failure. We can measure the location of this intersection to get σ1f ≈ 95 kPa.

(b) To determine the minor and major effective principal stresses at failure (σ′
3f

and σ′
1f , respectively), we can draw an effective-stress Mohr’s circle that touches

the effective–stress Mohr–Coulomb failure criterion as shown in Figure 5.21b.
This effective-stress Mohr’s circle has the same diameter as the total stress Mohr’s
circle. The intersections of the effective–stress Mohr’s circle with the horizontal
axis can be measured from the figure to give us σ′

3f ≈ 36 kPa and σ′
1f ≈ 108 kPa.
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(c) From Figure 5.21b we can measure the distance between σ1f and σ′
1f (or

between σ3f and σ′
3f ) to estimate (�ud)f , which is approximately −13 kPa (neg-

ative = suction).
Analytical solution (a) From (5.6) we have

sin φ = sin 37.5◦ = σ1f − σ3f

σ1f + σ3f

= σ1f − 23

σ1f + 23
→ σ1f = 95 kPa

(b) The effective-stress Mohr’s circle has the same diameter as the total stress
Mohr’s circle:

σ′
1f − σ′

3f = σ1f − σ3f = 95 − 23 = 72 kPa

From (5.5),

sin φ′ = σ′
1f − σ′

3f

σ′
1f + σ′

3f

→ σ′
1f + σ′

3f = σ′
1f − σ′

3f

sin φ′ = 72 kPa

sin 30◦ = 144 kPa

or σ′
1f + σ′

3f = 144 kPa, but σ′
1f − σ′

3f = 72 kPa. Solving these two equations
simultaneously, we get σ′

1f = 108 kPa and σ′
3f = 36 kPa.

(c) From the effective–stress equation and in reference to Figure 5.21b,

(�ud)f = σ1f − σ′
1f = 95 kPa − 108 kPa = −13 kPa

Note that the graphical solution is done first to gain some insight into the prob-
lem. Doing so makes it easier to seek an analytical solution. Also note that the
graphical solution is very simple and generally yields accurate answers if the draw-
ing is done correctly and to scale, as illustrated above.

5.3.3 Unconsolidated–Undrained Triaxial Test

The unconsolidated–undrained (UU) triaxial test is usually performed on undis-
turbed saturated samples of fine-grained soils (clay and silt) to measure their
undrained shear strength, cu. The soil specimen is not allowed to consolidate in
stage I under the confining pressure applied. It is also not allowed to drain during
shearing in stage II. Identical soil specimens exhibit the same shear strength under
different confining pressures, as indicated in Figure 5.22. It seems that applying
more confining pressure to the soil specimen does not cause any increase in its shear
strength! This can be explained as follows: When a fully saturated soil specimen is
subjected to additional confining pressure (total stress), it generates an equal excess
pore water pressure, which means that the additional confinement does not cause
additional effective confining pressure. The effective-stress principle indicates that
the shear strength of the soil specimen depends on the effective confining pressure.
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FIGURE 5.22 Typical results of an unconsolidated undrained triaxial test.

Therefore, since there was no increase in the effective confining pressure, there
would be no increase in shear strength.

As shown in Figure 5.22, the Mohr–Coulomb failure criterion is horizontal
(φu = 0) and it intersects the vertical axis at τ = cu. Note that cu is the undrained
shear strength of a soil and is equal to the radius of the total stress Mohr’s circle,
[i.e., cu = σ1f −σ3f

2 ]. The undrained shear strength is used appropriately to describe
the strength of fine-grained soils subjected to rapid loading, during which drainage
is not allowed; therefore, no dissipation of excess pore water pressures is possible.
Examples of that include rapid construction of embankments on clay deposits or
rapid loading of shallow foundations constructed on clay.

5.3.4 Unconfined Compression Test

The unconfined compression test is performed on unconfined cylindrical speci-
men of a cohesive soil to measure its unconfined compression strength, qu. The
undrained shear strength, cu, is equal to one-half of the unconfined compression
strength, qu, as indicated in Figure 5.23. This test is a special case of the uncon-
solidated–undrained triaxial test when performed without applying any confining
pressure. The undrained shear strength obtained by the two tests for the same
cohesive soil is theoretically identical. The unconfined compression test is gener-
ally performed on undisturbed specimens of cohesive soils at their natural water
contents. It is not possible to perform this test on cohesionless soils since they do
not have shear strength at zero confinement.

5.4 FIELD TESTS

The following is a brief description of field tests that can be used to measure the
in situ shear strength of soil.
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FIGURE 5.23 Typical results of an unconfined compression test.

5.4.1 Field Vane Shear Test

The vane shear test consists of a four-bladed vane that is pushed into the undisturbed
cohesive soil at the bottom of a borehole and rotated to determine the torsional
force required to cause a cylindrical soil specimen to be sheared by the vane.
The torsional force is then correlated to the undrained shear strength, cu. This test
provides a direct and reliable measurement of the in situ undrained shear strength.
A smaller handheld version of the vane shear test can be used to measure the
undrained shear strength of samples recovered from a test boring. This is done by
inserting the shear vane into the soil sample and twisting until failure. The undrained
shear strength of the soil is captured by an indicator mounted on the apparatus.

5.4.2 Cone Penetration Test

The cone penetration test (CPT) consists of a cylindrical probe with a cone tip
that is pushed continuously into the ground at a slow rate. The probe is instru-
mented with strain gauges to measure the tip and side resistance while the probe is
advancing into the ground. The data are gathered continuously using a computer.
The measured tip resistance is correlated with the undrained shear strength of the
soil at various depths.

5.4.3 Standard Penetration Test

The standard penetration test (SPT) consists of driving a sampler (a thin hollow
cylinder) into the bottom of a borehole using a standard hammer dropped from a
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standard distance. The number of blows required to drive the sampler a distance
of 30 cm into the ground is defined as the SPT blow count (N ). The blow count is
correlated to the undrained shear strength for cohesive soils and the friction angle
for granular soils.

5.5 DRAINED AND UNDRAINED LOADING CONDITIONS VIA FEM

When saturated coarse-grained soils (sand and gravel) are loaded slowly, volume
changes occur, resulting in excess pore pressures that dissipate rapidly, due to high
permeability. This is called drained loading. On the other hand, when fine-grained
soils (silts and clays) are loaded, they generate excess pore pressures that remain
entrapped inside the pores because these soils have very low permeabilities. This
is called undrained loading.

Both drained and undrained conditions can be investigated in a laboratory triax-
ial test setup. Consider a soil specimen in a consolidated–drained (CD) triaxial test.
During the first stage of the triaxial test (Figure 5.11) the specimen is subjected to
a constant confining stress, σ3, and allowed to consolidate by opening the drainage
valves. In the second stage of the CD triaxial test (Figure 5.12) the specimen is sub-
jected, by means of the loading ram, to a monotonically increasing deviator stress,
σ1 − σ3, while the valves are kept open. The deviator stress is applied very slowly to
ensure that no excess pore water pressure is generated during this stage—hence the
term drained. Typical CD test results at failure can be presented using Mohr’s circle
as shown in Figures 5.13 and 5.14. The drained (or long-term) strength parameters
of a soil, c′ and φ′, can be obtained from the Mohr–Coulomb failure criterion as
indicated in the figures. Note that c′ = 0 for sands and normally consolidated clays.
These parameters must be used in drained (long-term) analysis of soils.

Now let’s consider a soil specimen in a consolidated–undrained (CU) triaxial test
(Figure 5.17). The first stage of this test is the same as the CD test—the specimen is
subjected to a constant confining stress, σ3, and allowed to consolidate by opening
the drainage valves. In the second stage of the CU test, however, the specimen is
subjected to a monotonically increasing deviator stress, σ1 − σ3, while the drainage
valves are closed—hence the term undrained. The undrained condition means that
there will be no volumetric change in the soil specimen (i.e., volume remains
constant). It also means that excess pore water pressure will be developed inside the
soil specimen throughout the test. Measurement of the pore water pressure allows
for effective stress calculations. Typical CU test results (at failure) for a normally
consolidated clay can be presented using Mohr’s circles as shown in Figure 5.24.
The undrained (or short-term) strength parameter of a soil, cu, is the radius of
the total stress Mohr’s circle (note that φu = 0). The parameter cu is termed the
undrained shear strength of the soil and must be used in undrained (short-term)
analysis of fine-grained soils. The effective-stress Mohr–Coulomb failure criterion
can be used to estimate the drained (or long-term) strength parameters c′ and φ′,
as shown in Figure 5.24 (c′ = 0 for NC clay).

In a finite element scheme, the drained (or long-term) behavior of a soil can be
simulated using coupled analysis, where the pore water pressure is calculated for a
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FIGURE 5.24 Drained and undrained strength parameters.

given load increment in each soil element and then subtracted from the total stresses
to estimate the effective stresses in the element. These effective stresses control the
deformation and shear strength of the soil element according to the effective-stress
principle. Constitutive models such as the cap and Cam clay models can be used
within the finite element framework to determine the deformation caused by these
effective stresses.

Four main measures must be considered for a successful finite element analysis
of soils considering their long-term (drained) behavior: (1) the initial conditions of
the soil strata (initial geostatic stresses, initial pore water pressures, and initial void
ratios), which will determine the initial stiffness and strength of the soil strata,
must be estimated carefully and implemented in the analysis; (2) the boundary
conditions must be defined carefully: pervious or impervious; (3) the long-term
strength parameters of the soil must be used in an appropriate soil model; and
(4) loads must be applied very slowly to avoid the generation of excess pore water
pressure throughout the analysis.

For undrained (or short-term) analyses, the aforementioned measures apply with
the exception of the last measure—the load can be applied very fast instead. This
is one of the most attractive aspects of coupled analysis. Drained and undrained
analyses (Examples 5.6 and 5.7, respectively) differ only in the way we apply the
load: Very slow loading allows the excess pore water pressure generated to dissipate
and the long-term-strength parameters to be mobilized, whereas fast loading does
not allow enough time for the pore water pressure to dissipate, thus invoking the
short-term strength of the soil. This means that there is no need to input the short-
term-strength parameters because the constitutive model will react to fast loading
in an “undrained” manner.

As an alternative method, undrained analysis can utilize the undrained shear
strength parameter, cu, directly in conjunction with a suitable constitutive model.
If the cap model is used, the cap parameters β and d can be calculated using cu
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and φu(= 0). This procedure can be used only for undrained (short-term) analy-
sis. Unlike the preceding procedure, this alternative procedure cannot be used for
drained analysis and for cases falling between the drained and the undrained cases
(partially drained).

Example 5.6 Hypothetical consolidated drained and consolidated undrained tri-
axial test results for a clayey soil are given in Figures 5.25 and 5.26, respectively.
The isotropic consolidation curve for the same soil is given in Figure 5.27. Using
the finite element method, simulate the consolidated–drained triaxial behavior of
this soil when subjected to a 210-kPa confining pressure. Consider a cylindrical
soil specimen with D = 5 cm and H = 5 cm as shown in Figure 5.28. The top and
bottom surfaces of the specimen are open and permeable. The loading plate and
the pedestal are smooth; therefore, their interfaces with the clay specimen can be
assumed frictionless. The clay specimen is normally consolidated and has a con-
stant permeability k = 0.025 m/s and initial void ratio e0 = 0.889, corresponding
to its 210-kPa confining pressure. Assume that the clay is elastoplastic, obeying
the extended Cam clay model (Chapter 2).

SOLUTION(filename: Chapter5 Example6.cae): Let’s determine the Cam clay
model parameters from the tests results provided in Figures 5.25 to 5.27. From
the e–log p′ curve shown in Figure 5.27, we can determine the values of the
compression index Cc = 0.4 and the swelling index Cs = 0.06. Note that the mean
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FIGURE 5.25 Hypothetical consolidated drained triaxial test results for a clayey soil.
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FIGURE 5.26 Hypothetical consolidated undrained triaxial test results for a clayey soil.
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FIGURE 5.28 Axisymmetric finite element mesh (one element).

effective stress in this figure is defined as p′ = (σ′
1 + 2σ′

3)/3 (p′ = σ′
3 for isotropic

consolidation). The parameter κ defines the elastic behavior of the soil in the
Cam clay model, and it is related to the swelling index through the equation κ =
Cs/2.3 = 0.06/2.3 = 0.026. The parameter λ is related to the compression index
through λ = Cc/2.3 = 0.4/2.3 = 0.174.

The effective-stress Mohr’s circles for the three consolidated drained triaxial
tests and the three consolidated undrained tests are given in Figure 5.29. The
effective-stress Mohr–Coulomb failure criterion is a straight line that is tangent
to the circles as shown in the figure. The slope of this line is the effective friction
angle of the soil φ′ = 25.4◦. The Cam clay strength parameter M is related to the

φ′ = 25.4°
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FIGURE 5.29 Effective-stress Mohr–Coulomb failure criterion for a clayey soil.
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internal friction angle of the soil, φ′, as follows:

M = 6 sin φ′

3 − sin φ′ (5.7)

Therefore,

M = 6 sin 25.4◦

3 − sin 25.4◦ = 1

An alternative procedure for determining M is to plot the at-failure stresses of all
six triaxial tests in the p′ = (σ′

1f + 2σ′
3f )/3 versus q = σ′

1f − σ′
3f plane as shown

in Figure 5.30. The data points are best fitted with a straight line called the critical-
state line. The slope of the critical-state line shown in the figure is the Cam clay
strength parameter M .

In the Cam clay model, the yield surface size is fully described by the parameter
p′ = (σ′

1 + 2σ′
3)/3. The evolution of the yield surface is governed by the volumetric

plastic strain ε
p

vol, which is a function of p′. The relationship between ε
p

vol and p′
can be deduced easily from an e–log p′ line. The consolidation curve (the e–log
p′ line) is defined completely by its slope Cc (= 2.3λ), and the initial conditions
p′

0 (= σ′
0) and e0. Note that λ, σ′

0, and e0 are part of the input parameters required
in the finite element program used herein.

The preconsolidation pressure, σ′
c, is also a required parameter. It is specified by

the size of the initial yield surface as shown in Table 5.1. Consider the initial yield
surface that corresponds to p′

0 = 210 kPa (or p′
0/2 = 105 kPa), where p′

0 = 210 kPa
is equal to the confining pressure σ′

3. In this example, σ′
c is assumed to be equal

to the confining pressure, indicating that the clay is normally consolidated. If the
clay were overconsolidated, its σ′

c can be set equal to its preconsolidation pressure,
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FIGURE 5.30 Critical-state line for a clayey soil.
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TABLE 5.1 Cam Clay Model Parameters

General Plasticity

ρ (kg/m3) 1923 λ 0.174
k (m/sec) 0.025 Stress ratio, M 1
γw (kN/m3) 9.81 Initial yield surface
e0 0.889 size = p′

0/2 (kPa) 105
Elasticity Wet yield surface

κ 0.026 size 1
υ 0.28 Flow stress rate 1

which is greater than its confining pressure. A summary of the Cam clay model
parameters is given in Table 5.1.

A two-dimensional axisymmetric mesh is used with one element only, as shown
in Figure 5.28. The element chosen is a pore fluid/stress eight-node axisymmet-
ric quadrilateral element with biquadratic displacement, bilinear pore pressure, and
reduced integration. The boundary conditions of the finite element mesh shown in
Figure 5.28 are as follows. On the bottom side, the vertical component of displace-
ment is fixed (uz = 0). The left-hand side of the mesh is a symmetry line (ux = 0).
On the top surface a uniform downward displacement of 0.5 cm is applied very
slowly. During load application the top surface of the finite element mesh is made
pervious. This means that the top and bottom of the soil specimen are allowed to
drain due to symmetry about a plane passing through the midheight of the soil
cylinder.

Similar to an actual consolidated–drained triaxial test, this finite element anal-
ysis is carried out in two steps: a consolidation step and a shearing step. The first
step is a single increment of analysis with drainage allowed across the top surface.
In this step the confining pressure of 210 kPa is applied at the top surface and
the right side of the mesh. During step 1, the “geostatic” command is invoked
to make sure that equilibrium is satisfied within the soil specimen. The geostatic
option makes sure that the initial stress condition in the clay specimen falls within
the initial yield surface of the Cam clay model. Step 2 is the shearing step with
duration of 109 seconds. In this step the loading plate is forced to displace down-
ward at a very small rate (5 × 10−10 cm/s). This low rate of displacement is used to
ensure that the excess pore water pressure within the clay specimen is always zero.
Automatic time stepping with a maximum pore water pressure change of 0.007 kPa
per time increment is used. This procedure is useful for loading steps with very
long duration. When the loading starts in the beginning of the step, the rate of pore
water pressure change is high, therefore, small time increments are used. Later,
when the rate of pore water pressure change decreases, larger time increments are
used. As an alternative, one can use a shorter duration for this loading step with
fixed-time stepping instead. However, we need to make sure that the excess pore
water pressure during this step is kept equal to zero. This can be done easily by
plotting the pore water pressure at the center of the soil specimen as a function of
time. If not zero, the duration of the shearing step can be increased.
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FIGURE 5.31 Comparison between hypothetical CD triaxial test results and finite element
prediction using Cam clay and cap models.

The calculated consolidated–drained stress–strain behavior of the clay specimen
is compared with the hypothetical test data as shown in Figure 5.31. The axial
strain versus volumetric strain is also compared to the experimental data in the
same figure. Excellent agreement is noted in the figure. This means that the Cam
clay model embodied in the finite element method is capable of describing the
consolidated–drained triaxial behavior of normally consolidated clays.

Example 5.7 Using the same hypothetical test data and assumptions given in
Example 5.6, predict the consolidated–undrained triaxial behavior of a triaxial soil
specimen subjected to a 210-kPa confining pressure.

SOLUTION(filename: Chapter5 Example7.cae): As described in Example 5.6, we
have estimated the parameters of the Cam clay model from the hypothetical test
data provided. Those parameters are used in this example as well. The solution
of this problem is identical to the solution of Example 5.6 with two exceptions:
(1) the top and bottom of the soil specimen are made impervious (undrained), and
(2) the shearing load is applied faster.

We will use the same finite element mesh (Figure 5.28) that was used in Example
5.6. Similar to an actual consolidated–undrained triaxial test, this finite element
analysis is carried out in two steps: a consolidation step and a shearing step. In
the first step, the consolidation step, an all-around confining pressure of 210 kPa
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is applied while drainage is permitted across the top surface. During this step,
the “geostatic” command is invoked to make sure that equilibrium is satisfied
within the clay specimen. The geostatic option makes sure that the initial stress
condition in the clay specimen falls within the initial yield surface of the Cam clay
model.

The second step, the undrained shearing step, has a duration of 100 seconds.
In the beginning of this step the pervious boundary at the top surface is removed,
making the top surface impervious by default. In this step the loading plate is
forced to displace downward a distance of 0.127 cm at a displacement rate of
1.27 × 10−3 cm/s. This rate of displacement, along with the impervious boundaries,
will cause the excess pore water pressure to generate during shearing. Automatic
time stepping with a maximum pore water pressure change of 0.7 kPa per time
increment is used.

The consolidated–undrained stress–strain behavior calculated for the clay speci-
men is compared with the hypothetical test data as shown in Figure 5.32. The axial
strain versus pore water pressure is also compared to the hypothetical test data in
the same figure. Excellent agreement is noted in the figure.
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FIGURE 5.32 Comparison between hypothetical CU triaxial test results and finite element
prediction using Cam clay and cap models.
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Example 5.8 Assuming that the clayey soil described in Example 5.6 is elasto-
plastic, obeying the cap model (Chapter 2), predict the (a) consolidated–drained and
(b) consolidated–undrained triaxial behavior of the soil when subjected to a 210-kPa
confining pressure. Consider a cylindrical specimen with D = 5 cm and H = 5 cm
as shown in Figure 5.28. The loading plate and the pedestal are smooth; therefore,
their interfaces with the clay specimen can be assumed frictionless. The clay spec-
imen is normally consolidated and has a constant permeability k = 0.025 m/s and
initial void ratio e0 = 0.889, corresponding to its 210-kPa confining pressure.

SOLUTION: (a) Consolidated–drained triaxial condition (filename: Chapter5
Example8a.cae) We need to determine the cap model parameters from the hypo-
thetical test results provided in Figures 5.25 to 5.27. We use the same finite element
mesh (Figure 5.28) that was used in Example 5.6.

Six effective-stress Mohr’s circles corresponding to failure stresses obtained
from the hypothetical triaxial test results (Figures 5.25 and 5.26) are plotted in
Figure 5.29. Subsequently, the effective-stress Mohr–Coulomb failure criterion is
plotted as a straight line that is tangential to the six circles. The soil strength
parameters φ′ = 25.4◦ and c′ = 0 kPa are obtained from the slope and intercept of
the Mohr-Coulomb failure criterion.

For triaxial stress conditions, the Mohr–Coulomb parameters (φ′ = 25.4◦ and
c′ = 0 kPa) can be converted to Drucker–Prager parameters (Chapter 2) as follows:

tan β = 6 sin φ′

3 − sin φ′ for φ′ = 25.4◦ → β = 45◦

d = 18c cos φ′

3 − sin φ′ for c′ = 0 → d = 0

An alternative procedure for determining β and d is to plot the at-failure stresses
of all six triaxial tests in the p′ = (σ′

1f + 2σ′
3f )/3 versus q = σ′

1f − σ′
3f plane as

shown in Figure 5.33. The data points are best fitted with a straight line whose
slope is equal to tan β = 1; thus, β = 45◦. The line intersects with the vertical
axis at d = 0. The cap eccentricity parameter is chosen as R = 1.2. The initial
cap position, which measures the initial consolidation of the specimen, is taken as
ε

pl
vol(0) = 0.0, which corresponds to p′ = 210 kPa. The transition surface parameter

α = 0.05 is used. These parameters are summarized in Table 5.2.
The cap hardening curve shown in Figure 5.34 was obtained from the isotropic

consolidation test results shown in Figure 5.27. From Figure 5.27 we can calculate
the plastic volumetric strain as

εp
v = λ − κ

1 + e0
ln

p′

p′
0

= Cc − Cs

2.3(1 + e0)
ln

p′

p′
0

For this clayey soil we have λ = 0.174, κ = 0.026, p′
0 = 210 kPa, and e0 = 0.889;

therefore,

εp
v = 0.174 − 0.026

1 + 0.889
ln

p′

210
= 0.07834 ln

p′

210
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FIGURE 5.33 Determination of the cap model parameters d and β for a clayey soil.

TABLE 5.2 Cap Model Parameters

General Plasticity

ρ (kg/m3) 1923 d 0
e0 0.889 β (deg) 45

Elasticity R 1.2
E (MPa) 182 Initial yield 0.0
υ 0.28 α 0.05

K 1
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FIGURE 5.34 Determination of the cap model hardening curve.
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This equation describes the evolution of the plastic volumetric strain (the hard-
ening parameter) with the mean effective stress (Figure 5.34).

We will use the cap model parameters above to reproduce the stress–strain
curves of the clayey soil subjected to a confining pressure of 210 kPa. This is
done by using one axisymmetric finite element in the same manner described in
Example 5.6. The calculated consolidated–drained stress–strain behavior of the
clay specimen is compared with the hypothetical test data as shown in Figure 5.31.
The axial strain versus volumetric strain is also compared to the hypothetical test
data in the same figure. It can be noted from Figure 5.31 that the cap model can
adequately simulate the behavior of the clayey soil on the “elemental” level.

(b) Consolidated–undrained triaxial condition (filename:Chapter5 Example8b.
cae) As described above, we have estimated the parameters of the cap model
from the hypothetical test data. Those parameters will also be used here to predict
the consolidated–undrained triaxial behavior of the clayey soil. The solution of this
problem is identical to the solution of the consolidated–drained triaxial test with
two exceptions: (1) the top and bottom of the soil specimen are made impervious
(undrained), and (2) the shearing load is applied faster.

The finite element mesh shown in Figure 5.28 is used here, too. The analysis is
carried out in two steps: a consolidation step and a shearing step. In the first step,
the consolidation step, a confining pressure of 210 kPa is applied while drainage
is permitted across the top surface of the finite element mesh. During this step,
the “geostatic” command is invoked to ensure equilibrium. The second step, the
undrained shearing step, has a duration of 100 seconds, during which the pervious
boundary at the top surface is canceled. The loading plate is forced to displace
downward a distance of 0.127 at a displacement rate of 1.27 × 10−3 cm/s. This
loading will cause the excess pore water pressure to generate during shearing.
Automatic time stepping with a maximum pore water pressure change of 0.7 kPa
per time increment is used.

The calculated consolidated–undrained stress–strain behavior of the clay spec-
imen is compared with the triaxial test data as shown in Figure 5.32. The axial
strain versus pore water pressure is also compared to the test data in the same
figure. Excellent agreement is noted in the figure.

Example 5.9 : Back-Calculation of CD Triaxial Test Results Using Lade’s Model
Use Lade’s model parameters for the dense silty sand, obtained in Example 2.3
(Table 2.5), along with the finite element method to back-calculate the stress–strain
behavior of the soil under CD triaxial conditions.

SOLUTION(filename: Chapter5 example9.cae): Using the finite element method,
we simulate the consolidated–drained triaxial behavior of this soil under three con-
fining pressures. A two-dimensional axisymmetric mesh is used with one element
only (similar to Example 5.8). The element chosen is a four-node axisymmetric
quadrilateral element. As in Example 5.8, the left-hand side of the mesh is a sym-
metry line, and the bottom of the finite element mesh is on rollers. A uniform
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downward displacement is applied slowly on the top surface of the mesh (strain-
controlled triaxial test).

The analysis is carried out in two steps: a consolidation step and a shearing step.
The first step is a single increment of analysis in which the confining pressure is
applied at the top surface and the right side of the mesh. During step 1, the “geo-
static” command is invoked to make sure that equilibrium is satisfied within the soil
specimen. The geostatic option makes sure that the initial stress condition in the soil
specimen falls within the initial yield surface of Lade’s model. Step 2 is a shearing
step in which the loading plate is forced to displace downward at a small rate.

In this simulation we use Lade’s model parameters for the dense silty sand,
obtained in Example 2.3 (Table 2.5). Figure 5.35 presents the soil’s triaxial behav-
ior under three confining pressures. The calculated stress–strain behavior is com-
pared with the experimental data. Reasonable agreement is noted in the figure.
Of particular interest is the dilative behavior in the volumetric strain versus axial
strain plane where the calculated results (Lade’s model) captured the important
dilation phenomenon. In Example 2.3 we presented a similar comparison between
the experimental data and spreadsheet calculations based on Lade’s model. It is
noteworthy that the finite element results obtained in the present example are in
perfect agreement with the results of the spreadsheet analysis. This implies that the
implementation of Lade’s model in the finite element program used herein is done
correctly.

Example 5.10 Plane Strain Test Simulation Using Lade’s Model Use Lade’s
model parameters for the dense silty sand, obtained in Example 2.3 (Table 2.5)
along with the finite element method to predict the behavior of the soil specimen
shown in Figure 5.36a. Assume that the soil specimen is infinitely long in the z-
direction and that a plane strain condition applies. Also assume that the specimen
is subjected to a constant confining pressure of 172.37 kPa.

SOLUTION(filename: Chapter5 example10.cae): The two-dimensional plane
strain finite element mesh used in this analysis is shown in Figure 5.36b. The
mesh has 154 elements. The element chosen is a four-node bilinear plane strain
quadrilateral element. As shown in Figure 5.36b, the bottom of the finite element
mesh is on rollers, simulating a frictionless interface between the soil and the bot-
tom surface of the plane strain test apparatus. A uniform downward displacement
is applied slowly on the top surface of the mesh (strain-controlled shear test).

The analysis is carried out in two steps: a consolidation step and a shearing step.
The first step is a single increment of analysis in which the confining pressure is
applied at the top surface and the sides of the mesh. During step 1, the “geostatic”
command is invoked to make sure that equilibrium is satisfied within the soil
specimen. The geostatic option makes sure that the initial stress condition in the soil
specimen falls within the initial yield surface of Lade’s model. Step 2 is a shearing
step in which the loading plate is forced to displace downward at a small rate.

In this simulation we use Lade’s model parameters for the dense silty sand,
obtained in Example 2.3 (Table 2.5). Figure 5.37 presents the deformed shape of
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FIGURE 5.35 Stress–strain behavior of a dense silty sand: Lade’s model versus experi-
mental data.

the plane strain soil model at an advanced stage of loading (postpeak behav-
ior). Figure 5.38 shows the distribution of the vertical strains at an advanced
stage of loading. Note the presence of a zone of concentrated strains that
resembles a failure plane. The severe distortion within this concentrated strain
zone (also known as shear band ) is evident in Figure 5.37. Note that the
zones above and below the shear band have a minimal amount of distortion.
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FIGURE 5.36 Plane strain test configuration.

PROBLEMS

5.1 A direct shear test is performed on a sand specimen at a constant normal
stress of 40 kPa. The measured shear stress at failure is 28.5 kPa. Calculate
the shear strength parameters of the sand. What is the shear stress at failure
if the normal stress were 60 kPa?

5.2 The results of direct shear tests performed on a clay specimen indicated that
c′ = 30 kPa and φ′ = 22◦. What is the shear strength of this soil at σ′ = 0
and σ′ = 100 kPa?

5.3 Refer to Figure 5.8. Due to the self-weight of the wedge a normal stress of
1000 kPa and a shear stress of 620 kPa are applied to the inclined plane.
What is the minimum friction angle between the wedge and the inclined
plane required to maintain equilibrium?

5.4 Express the Mohr–Coulomb failure criterion in terms of the minor and major
principal stresses. [Hint: In reference to Figure 5.13, on the failure plane at
failure we have

σ′ = σ′
1 + σ′

3

2
− σ′

1 − σ′
3

2
sin φ′ and τ = σ′

1 − σ′
3

2
cos φ′]

5.5 A CD triaxial compression test conducted on a sand specimen revealed that
φ′ = 22◦. What is the deviator stress at failure if the confining pressure is
50 kPa? Solve the problem graphically and analytically.
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FIGURE 5.37 Deformed shape at an advanced stage (post failure).

FIGURE 5.38 Strain concentration along the failure surface.
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5.6 A CD triaxial compression test conducted on a clay specimen revealed that
c′ = 5 kPa and φ′ = 22◦. What is the major principal stress at failure if the
confining pressure is 35 kPa? Solve the problem graphically and analytically.

5.7 A consolidated–undrained triaxial test was performed on a sand specimen
at a confining pressure σ3 = 40 kPa. The consolidated–undrained friction
angle of the sand is φ = 28◦, and the effective friction angle is φ′ = 33◦.
Calculate (a) the major principal stress at failure, σ1f ; (b) the minor and the
major effective principal stresses at failure, σ′

3f and σ′
1f ; and (c) the excess

pore water pressure at failure, (�ud)f . Solve the problem graphically and
analytically.

5.8 A CD triaxial compression test was conducted on a sand specimen using a
confining pressure of 50 kPa. Failure occurred at a deviator stress of 120
kPa. Calculate the normal and shear stresses on the failure plane at failure.
Solve the problem graphically and confirm your solution analytically.

5.9 A CU triaxial test was performed on a dense sand specimen at a confining
pressure σ3 = 40 kPa. The consolidated–undrained friction angle of the sand
is φ = 39◦, and the effective friction angle is φ′ = 34◦. Calculate (a) the
major principal stress at failure, σ1f ; (b) the minor and the major effec-
tive principal stresses at failure, σ′

3f and σ′
1f ; and (c) the excess pore water

pressure at failure, (�ud)f . Solve the problem graphically and analytically.

5.10 Refer to Example 5.6. Hypothetical consolidated–drained and consol-
idated–undrained triaxial test results for a clayey soil are given in
Figures 5.25 and 5.26, respectively. The isotropic consolidation curve for
the same soil is given in Figure 5.27. Using the finite element method, sim-
ulate the consolidated–drained triaxial behavior of this soil when subjected
to a 140-kPa confining pressure. Consider a cylindrical soil specimen with
D = 5 cm and H = 5 cm as shown in Figure 5.28. The top and bottom
surfaces of the specimen are open and permeable. The loading plate and the
pedestal are smooth, therefore, their interfaces with the clay specimen can
be assumed frictionless. The clay specimen is normally consolidated and
has a constant permeability k = 0.025 m/s and initial void ratio e0 = 0.959,
corresponding to its 140-kPa confining pressure. Assume that the clay is
elastoplastic obeying the extended Cam clay model (Chapter 2).

5.11 Refer to Example 5.7. Using the same hypothetical test data and assump-
tions given in Problem 5.10, predict the consolidated–undrained triaxial
behavior of a triaxial soil specimen subjected to 140-kPa confining pres-
sure. Assume that the clay is elastoplastic, obeying the extended Cam clay
model (Chapter 2).

5.12 Refer to Example 5.8. Assuming that the clayey soil described in Problem
5.10 is elastoplastic, obeying the Cap model (Chapter 2), predict the consol-
idated–drained and the consolidated–undrained triaxial behavior of the soil
when subjected to a 140-kPa confining pressure.
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5.13 Obtain Lade’s model parameters (Chapter 2) for the soil described in Prob-
lem 5.10. Use Lade’s model parameters, along with the finite element method
to predict the consolidated–drained triaxial behavior of the soil when sub-
jected to a 140-kPa confining pressure.

5.14 The at-failure results of several CD and CU triaxial tests of a silty sand
are presented in the p′ − q plane as shown in Figure 5.39. The results of
an isotropic compression test performed on the same soil are shown in
Figure 5.40. Estimate the Cam clay model parameters M, λ, and κ. Note
that you can obtain the compression index and the swelling index from
Figure 5.40 (not λ and κ).
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FIGURE 5.39 p′ versus q ′ curve for silty sand.
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5.15 Using the finite element method and the Cam clay model parameters for the
silty sand (Problem 5.14), predict the consolidated–drained triaxial behavior
of this soil when subjected to a confining pressure of 70 kPa. Note that
the initial void ratio that corresponds to this confining pressure is 0.34
(Figure 5.40).

5.16 Repeat Problem 5.15 for consolidated–undrained triaxial test conditions.

5.17 The at-failure results of several CD and CU triaxial tests of a silty sand
are presented in the p′ − t plane as shown in Figure 5.39. The results of
an isotropic compression test performed on the same soil are shown in
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FIGURE 5.41 Stress–strain behavior of loose Sacramento River sand. (Adapted from
Lade, 1977.)
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Figure 5.40. (a) Calculate the soil’s angle of friction, β, and its cohesion, d,
in the p′ − t plane. (b) Using the results of the isotropic compression test
performed on the same soil (Figure 5.40), calculate the hardening curve for
the cap model assuming the initial conditions p′

0 = 70 kPa and e0 = 0.34.

5.18 Using the finite element method and the cap model parameters for the
silty sand (Problem 5.17), predict the consolidated–drained triaxial behav-
ior of this soil when subjected to a confining pressure of 70 kPa. Note
that the initial void ratio that corresponds to this confining pressure is 0.34
(Figure 5.40).

5.19 Repeat Problem 5.18 for consolidated–undrained triaxial test conditions.

5.20 The results of four consolidated–drained triaxial tests and one isotropic com-
pression test on loose Sacramento River sand are shown in Figures 5.41
and 5.42, respectively. Estimate Lade’s model parameters following the pro-
cedure discussed in Chapter 2.

5.21 Using the finite element method and Lade’s model parameters obtained
in Problem 5.20, predict the consolidated drained triaxial behavior of a
loose Sacramento River sand specimen subjected to a confining pressure
of 2 kg/cm2.

5.22 From the results of the consolidated drained triaxial tests and the isotropic
compression test on loose Sacramento River sand shown in Figures 5.41
and 5.42, respectively, estimate the Cam clay model parameters.

0 10 20
0

100

200

σ 3
 (

kg
/c

m
2 )

εv (%)

FIGURE 5.42 Isotropic compression behavior of loose Sacramento River sand. (Adapted
from Lade, 1977.)
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5.23 Using the finite element method and the Cam clay model parameters obtained
in Problem 5.22, predict the consolidated–drained triaxial behavior of a
loose Sacramento River sand specimen subjected to a confining pressure of
2 kg/cm2.

5.24 Obtain the cap model parameters using the results of the consoli-
dated–drained triaxial tests and the isotropic compression test on loose
Sacramento River sand shown in Figures 5.41 and 5.42, respectively.

5.25 Using the finite element method and the cap model parameters obtained
in Problem 5.24, predict the consolidated–drained triaxial behavior of a
loose Sacramento River sand specimen subjected to a confining pressure of
2 kg/cm2.



CHAPTER 6

SHALLOW FOUNDATIONS

6.1 INTRODUCTION

Shallow foundations are structural members that convert the concentrated super-
structural loads into pressures applied to the supporting soil. Square, circular, strip,
and mat foundations are common shapes of shallow foundations. Each of these
shapes is suitable for a specific type of structure: A square foundation is used
under a column, a circular foundation is used for cylindrical structures such as
water tanks, a strip foundation is used under retaining walls, and a mat (raft)
foundation is used under an entire building. A foundation is considered shallow
if Df ≤ B as proposed by Terzaghi (1943), where B is the foundation width and
Df is the foundation depth, as shown in Figure 6.1. Others proposed that foun-
dations with greater depths (up to 4B) can be considered shallow foundations.
When designing a shallow foundation, two aspects must be considered: (1) the
applied foundation pressure should not exceed the bearing capacity of the sup-
porting soil; and (2) the foundation settlement should not be excessive due to the
applied foundation pressure.

6.2 MODES OF FAILURE

There are three possible modes of soil failure, depending on soil type and foundation
size and depth. The first mode, general shear failure, is usually encountered in dense
sands and stiff clays underlying a shallow foundation. In reference to Figure 6.2,
when the load Q is increased gradually, the corresponding foundation pressure, q,
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will increase. The foundation settlement will also increase, with increasing pressure
until the ultimate bearing capacity, qu, is reached. A sudden increase in settlement
is noted immediately after reaching qu, indicating severe loss of support. The
general shear failure mode is accompanied by the occurrence of a failure surface
(Figure 6.2) and the inability to maintain the applied pressure. There is a distinctive
peak in the pressure versus settlement curve shown in the figure, which corresponds
to the ultimate bearing capacity, qu.

B

Df

FIGURE 6.1 Shallow foundations.

qu

Original Surface of Soil

q = Q/A

q = Q/A

Settlement

Q

A = L × B
L = Foundation Length
B = Foundation Width 

B

Failure Surface

FIGURE 6.2 General shear failure.
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Original Surface of Soil 
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L = Foundation Length 
B = Foundation Width 

B

Failure Surface

FIGURE 6.3 Local shear failure.

The second failure mode, local shear failure, is encountered in medium-dense
sands and medium-stiff clays. It is characterized by the lack of a distinct peak in
the pressure versus settlement curve, as shown in Figure 6.3. In the case of local
shear failure, determination of the ultimate bearing capacity is usually governed
by excessive foundation settlements, as indicated in the figure. The local shear
failure mode is accompanied by a progressive failure surface that may extend to
the ground surface after qu is reached (Figure 6.3).

The third mode of failure, punching shear failure, usually occurs in loose sands
and soft clays. This type of failure is accompanied by a triangular failure sur-
face directly under the foundation. As in local shear failure, punching failure is
also characterized by the lack of a distinctive ultimate bearing capacity. Thus, the
ultimate bearing capacity in this case is taken as the pressure corresponding to
excessive foundation settlements.

6.3 TERZAGHI’S BEARING CAPACITY EQUATION

Terzaghi presented his bearing capacity equation for shallow foundations in 1943.
The equation was derived for a continuous (strip) foundation with general shear
failure. The supporting material was assumed to be a thick layer of a homogeneous
soil. A continuous foundation is a foundation with a finite width B and infinite
length L; thus, B/L ≈ 0.

Figure 6.4 shows the assumed failure surface underlying the foundation. There
are three distinct failure zones of soil under the footing: a triangular zone, DEH,
immediately under the footing; two radial zones, DHG and EIH; and two Rank-
ine passive zones, DGC and EFI. The soil above the foundation level, having a
thickness of Df , is replaced by an overburden pressure of q = γDf to simplify
the equilibrium analysis. Note that the angle α (Figure 6.4) is assumed to be equal
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FIGURE 6.4 General shear failure of a strip foundation: Terzaghi’s assumptions.

to the soil angle of internal friction φ′, and that the soil shear resistance along CA
and FB is neglected. In his limit equilibrium analysis, Terzaghi assumed that the
bearing capacity of the foundation is the pressure of the foundation that will cause
the triangular zone to be in a downward impending motion condition. For that to
happen, the triangular zone will push the radial shear zones to the left and right
away from the footing, and in turn, the radial shear zones will push the Rankine
passive zones upward. The impending motion condition is assumed to take place in
all zones simultaneously. Based on this assumption, Terzaghi derived the following
equation for a strip foundation and general shear failure:

qu = c′Nc + qNq + 1
2γBNγ (6.1)

where c′ is the cohesion intercept of soil, q the overburden pressure at foundation
depth (q = γDf ), γ the unit weight of soil, B the foundation width, and Nc, Nq , and
Nγ are nondimensional bearing capacity factors that are functions of soil friction
angle φ′. The bearing capacity factors Nc, Nq , and Nγ are given by

Nq = eπ tan φ′
tan2

(
45 + φ′

2

)
(6.2)

Nc = (Nq − 1) cot φ′ (6.3)

Nγ = (Nq − 1) tan 1.4φ′ (6.4)

Equation (6.1) can be modified to estimate the bearing capacity for a square foun-
dation:

qu = 1.3c′Nc + qNq + 0.4γBNγ (6.5)

and for a circular foundation:

qu = 1.3c′Nc + qNq + 0.3γBNγ (6.6)
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Bearing capacity equations for local shear and punching shear modes of failure
for strip, square, and circular foundations are available in many geotechnical and
foundation engineering books (e.g., Das, 2004).

Example 6.1 Bearing Capacity of a Strip Foundation Using Terzaghi’s equa-
tion, calculate the bearing capacity of a 0.6-m-wide strip foundation on a thick
homogeneous layer of Ottawa sand with c′ = 0 and φ′ = 37◦. The foundation is
situated at a depth = 0.38 m, as shown in Figure 6.5. The unit weight of Ottawa
sand is 18.14 kN/m3.

SOLUTION: Use (6.1) (for a strip foundation):

c′ = 0

γ = 18.14 kN/m3, Df = 0.38 m → q = γDf = (18.14)(0.38) = 6.89 kPa

φ′ = 37◦ →

Nq = eπ tan 37◦
tan2

(
45◦ + 37◦

2

)
= 42.92

Ottawa Sand 

Strip
Foundation

0.38 m

0.6 m

15 m

4.5 m

1 m

FIGURE 6.5 Strip foundation situated on Ottawa sand.
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Nc = (42.92 − 1) cot 37◦ = 55.63

Nγ = (42.92 − 1) tan[1.4(37◦
)] = 53.27

Apply (6.1):

qu = 0 + (6.89)(42.92) + 1
2 (18.14)(0.6)(53.27) = 586 kPa

Example 6.2 Finite Element Application—Bearing Capacity Failure of a Strip
Foundation Solve Example 6.1 using the finite element method.

SOLUTION: (filename: Chapter6 Example2.cae): This example presents a limit
equilibrium solution for a layer of Ottawa sand loaded by a rigid, perfectly rough
strip footing. The solution is obtained using the finite element method, in which the
behavior of Ottawa sand is simulated using the cap model (modified Drucker–Prager
model with a cap, Chapter 2) with parameters matched to the classical Mohr–
Coulomb yield model parameters c′ and φ′. The problem geometry, boundary con-
ditions, and materials are identical to those of Example 6.1, providing a direct
means to compare the finite element analysis results with Terzaghi’s equation.

As described in Chapter 2, the Drucker–Prager/cap model adds a cap yield
surface to the modified Drucker–Prager model. The cap surface serves two main
purposes: It bounds the yield surface in hydrostatic compression, thus providing
an inelastic hardening mechanism to represent plastic compaction; and it helps
control volume dilatancy when the material yields in shear by providing softening
as a function of the inelastic volume increase created as the material yields on
the Drucker–Prager shear failure and transition yield surfaces. The model uses
associated flow in the cap region and a particular choice of nonassociated flow in
the shear failure and transition regions. In this example we show how to match
the parameters of a corresponding linear Drucker–Prager model, β and d, to the
Mohr–Coulomb parameters, φ′ and c′, under plane strain conditions. As described
in Chapter 5, the Mohr–Coulomb model is a classical failure model for soils and
is written as

(σ′
1 − σ′

3) − (σ′
1 + σ′

3) sin φ′ − 2c′ cos φ′ = 0

where σ′
1 and σ′

3 are the major and minor principal stresses, φ′ is the friction angle,
and c′ is the cohesion. The intermediate principal stress has no effect on yield in
this model. Experimental evidence suggests that the intermediate principal stress
does have an effect on yield; nonetheless, laboratory data characterizing granular
materials are often presented as values of φ′ and c′.

The plane strain model analyzed is shown in Figure 6.6. The layer of sand is
4.5 m deep and 15 m wide. The foundation is a 0.3-m-thick rigid and perfectly
rough concrete plate that spans a central portion 0.6 m wide. The model assumes
symmetry about a center plane. The foundation is assumed to be in perfect contact
with the soil (i.e., they share the nodal points in between). This means that relative
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Modeled Half 

15 m

0.6 m

4.5 m

0.3 m

q = γDf

FIGURE 6.6 Idealization of the plane strain strip foundation problem.

displacement between the foundation and soil is not permitted. Reduced-integration
bilinear plane strain quadrilateral elements are used for the sand and the concrete
foundation. The base of the sand layer is fixed in both the horizontal and vertical
directions. The right and left vertical boundaries are fixed in the horizontal direction
but free in the vertical direction. The finite element mesh used in the analysis
is shown in Figure 6.7. It is noted that the mesh is finer in the vicinity of the
foundation since that zone is the zone of stress concentration. No mesh convergence
studies have been performed. However, the depth and width of the sand layer are
chosen such that the boundary effect on foundation behavior is minimized.

For a “fair” comparison with Terzaghi’s equation, the 0.38-m-thick soil layer
in the idealized section (Figure 6.6) is replaced with an overburden pressure of
q = γDf = (18.14)(0.38) = 6.89 kPa. That way, the shear resistance of the 0.38-
m-thick soil layer will not be considered in the finite element analysis—as you

q = γDf

FIGURE 6.7 Finite element discretization of the strip foundation problem.
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recall, this was one of the assumptions Terzaghi used for the derivation of his
equation. Ordinarily, the foundation should be modeled with beam or shell ele-
ments that consider bending resistance. However, quadrilateral elements (which
have no bending resistance) are used in the current analysis for simplicity. Thus,
the foundation was discretized into four layers of elements in the vertical direction
to capture its bending resistance.

The concrete foundation is assumed to be linear elastic with a Young’s modu-
lus of 1435 MPa and a Poisson ratio of 0.2. The elastic response of Ottawa sand
is assumed to be linear and isotropic, with a Young’s modulus of 182 MPa and
a Poisson ratio of 0.3. Young’s modulus is estimated from the initial slope of
the stress–strain triaxial test results shown in Figure 6.8. Two Mohr circles cor-
responding to failure stresses obtained from the triaxial test results (Figure 6.8)
can be plotted. Subsequently, the Mohr–Coulomb failure criterion can be plotted
as a straight line that is tangential to the two circles. The soil strength parame-
ters φ′ = 37◦ and c′ = 0 MPa can be obtained from the slope and intercept of the
Mohr–Coulomb failure criterion.

For plane strain conditions, the Mohr–Coulomb parameters (φ′ = 37◦ and c′ =
0 MPa) can be converted to Drucker–Prager parameters as follows:

tan β = 3
√

3 tan φ′√
9 + 12 tan2 φ′ for φ′ = 37◦ → β = 44.56◦

d = 3
√

3c′√
9 + 12 tan2 φ′ for c′ = 0 → d = 0
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FIGURE 6.9 Isotropic consolidation test results and FEM results.

The cap eccentricity parameter is chosen as R = 0.4. The initial cap position (which
measures the initial consolidation of the specimen) is taken as ε

pl
vol(0) = 0.0, and

the cap hardening curve is as shown in Figure 6.9 as obtained from an isotropic
consolidation test on Ottawa sand. The transition surface parameter α = 0.05 is
used. These parameters, summarized in Table 6.1, were used to reproduce the
stress–strain curves of Ottawa sand under two confining pressures as shown in
Figure 6.8. This was done by using one axisymmetric finite element in the same
manner described in Chapter 5. The parameters were also used to reproduce the
results of an isotropic consolidation test on Ottawa sand as shown in Figure 6.9. It
can be noted from Figures 6.8 and 6.9 that the cap model can adequately simulate
the behavior of Ottawa sand on the “elemental” level.

We are interested primarily in obtaining the limit foundation pressure and in
estimating the vertical displacement under the foundation as a function of load.
The analysis is performed using two different numerical formulations: (1) static
analysis and (2) dynamic-explicit analysis with very slow loading. Static analysis
is the obvious choice since the loads in the current problem are applied statically

TABLE 6.1 Cap Model Parameters

General Plasticity
ρ (kg/m3) 1923 d 10−5

e0 1.5 β (deg) 44.56 (plane strain)
Elasticity 55.7 (3-D)

E (MPA) 182 R 0.4
ν 0.28 Initial yield 0.0

α 0.05
K 1
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without inducing any dynamic effects in the model. However, for problems with
expected severe distortions, such as the problem in hand, a static analysis may
terminate when a few soil elements near the edge of the foundation are distorted
excessively. For this class of problems, it is possible to analyze progressive failure
and postfailure conditions if dynamic–explicit formulations are used with caution.
When the dynamic–explicit mode is used, the loads must be applied very slowly
to avoid “exciting” the finite element model. Explicit analyses use very small time
increments to ensure stability, making them computationally expensive.

In the beginning of the analysis, gravity loads and surcharge loads are applied
to the sand layer. These loads are very important because they will determine the
initial stresses in all soil elements. As you know, the soil behavior is dependent
on the confining stresses, and the cap model used herein considers this important
fact (Chapter 2). In both analyses the foundation load is applied using a constant-
downward-velocity boundary condition at the top surface of the foundation with
v = 3.7 cm/s for a duration of 10 seconds. Other methods of load application are
usually available in finite element programs. This may include applying increasing
pressures, concentrated loads, or applying forced vertical displacements on the
foundation.

The constant-velocity boundary condition applied to the top surface of the
foundation causes the foundation to settle at a constant rate. Theoretically, the
foundation pressure can be increased gradually up to the failure point (termed
the bearing capacity) at which a failure surface, similar to the one in Figure 6.4,
develops. In the present finite element analysis, such a failure surface is evident
when the plastic shear strains are plotted for the at-failure condition as shown in
Figure 6.10. From this figure one can immediately notice the presence of a tri-
angular zone directly under the foundation, a radial zone, and a Rankine passive
zone resembling the three zones assumed by Terzaghi (Figure 6.4).

The pressure–settlement curve for the static analysis and the dynamic–explicit
analysis are shown in Figure 6.11. Both analyses agree well until some soil element
in the vicinity of the corner of the foundation have severely distorted. The static
analysis was automatically terminated at that stage, whereas the dynamic–explicit
analysis continued until a much more advanced stage. Nonetheless, both analyses
predicted approximately the same bearing capacity of 440 kPa. For reference, the
bearing capacity of 586 kPa predicted by Terzaghi’s equation (Example 6.1) is also
shown in Figure 6.11. Note that the finite element prediction of bearing capacity
is significantly smaller than Terzaghi’s bearing capacity. This difference can be
attributed to several causes, the most important of which is that Terzaghi’s equation
assumes that the soil is a rigid–perfectly plastic material that fails abruptly when
the bearing capacity of the soil is reached. In contrast, the present finite element
analysis assumes that the soil is an elastoplastic material with hardening. Such a
material will deform under applied loads, as opposed to a rigid material that does
not deform. Also, the soil can yield in a progressive manner due to the nature of
the finite element formulation—elements can yield gradually and progressively:
A yielding element causes an element next to it to yield, and so on until a shear
surface similar to the one shown in Figure 6.10 is realized.
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FIGURE 6.10 Plastic shear strain distribution at failure.

0 200 400 600 800

Vertical Stress Under Footing (kPa)

0

5

10

15

V
er

tic
al

 D
is

pl
ac

em
en

t (
cm

)

Terzaghi

FEM
(static)

FEM
(dynamic/explicit)

FIGURE 6.11 Load–displacement curve: comparison of FEM results with Terzaghi cal-
culation.
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Example 6.3 Bearing Capacity of a Square Foundation (a) Using Terzaghi’s
equation, calculate the bearing capacity of a 3 m × 3 m foundation on a 12-m-thick
homogeneous layer of Ottawa sand (c′ = 0 and φ′ = 37◦) underlain by bedrock.
The foundation is situated at a depth Df = 0.38 m. The unit weight of soil is
18.14 kN/m3. (b) Solve part (a) using the finite element method. Assume that
Ottawa sand has the properties described in Example 6.2. Use the cap model to
simulate sand behavior. Compare finite element prediction of bearing capacity with
that predicted by Terzaghi’s equation. (Hint : Use three-dimensional simulation.)

SOLUTION: (a) Terzaghi’s solution Use (6.5) (for a square foundation):

c′ = 0

γ = 18.14 kN/m3, Df = 0.38 m → q = γDf = (18.14)(0.38) = 6.89 kPa

φ′ = 37◦ →

Nq = eπ tan 37◦
tan2

(
45◦ + 37◦

2

)
= 42.92

Nc = (42.92 − 1) cot 37◦ = 55.63

Nγ = (42.92 − 1) tan[(1.4)(37◦
)] = 53.27

Apply (6.5):

qu = 0 + (6.89)(42.92) + (0.4)(18.14)(3.0)(53.27) = 1474 kPa

(b) Finite element solution (filename: Chapter6 Example3.cae) This example
presents a limit equilibrium solution for a layer of Ottawa sand loaded by a rigid,
perfectly rough square footing. The cap model (modified Drucker–Prager model
with a cap, Chapter 2), with parameters matched to the classical Mohr–Coulomb
yield model parameters c′ and φ′, is used to simulate the behavior of Ottawa sand.
The problem geometry, boundary conditions, and materials are identical to those
of part (a) of Example 6.3, providing a direct means to compare the finite element
analysis results with Terzaghi’s solution.

The three-dimensional model analyzed is shown in Figure 6.12. The sand layer
is 50 m deep and 100 m × 100 m in plan. The loaded area is 3 m × 3 m. The model
considers only one-fourth of the sand layer and the loaded area, taking advantage
of symmetry as indicated in the figure. The loaded area simulates a foundation with
perfect contact with the soil. Reduced-integration, eight-node linear brick elements
are used for the sand layer. The base of the sand layer is fixed in all directions.
All vertical boundaries are fixed in the horizontal direction but free in the vertical
direction. The finite element mesh used in the analysis is shown in Figure 6.13. It
is noted that the mesh is finer in the vicinity of the foundation since that zone is the
zone of stress concentration. No mesh convergence studies have been performed.
However, the dimensions of the sand layer are chosen in a way that the boundary
effect on foundation behavior is minimized.
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FIGURE 6.12 Idealization of the three-dimensional square foundation problem.
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FIGURE 6.13 Finite element discretization of the square foundation problem.
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To compare with Terzaghi’s equation, the 0.38-m-thick soil layer (foundation
depth, Df ) is replaced by an overburden pressure of q = γDf = (18.14)(0.38) =
6.89 kPa. That way the shear resistance of the 0.38-m-thick soil layer will not
be considered in the finite element analysis. This is one of the assumptions that
Terzaghi used for the derivation of his equation. The elastic response of Ottawa
sand is assumed to be linear and isotropic, with a Young’s modulus of 182 MPa and
a Poisson ratio of 0.3. Young’s modulus is estimated from the initial slope of the
stress–strain triaxial test results shown in Figure 6.8. The soil strength parameters
φ′ = 37◦ and c′ = 0 MPa can be obtained from the slope and intercept of the
Mohr–Coulomb failure criterion as described in Example 6.2.

In this example, the parameters of a linear Drucker–Prager model, β and d,
are matched to the Mohr–Coulomb parameters, φ′ and c′, under triaxial stress
conditions—appropriate for the stress conditions of this three-dimensional problem.
For triaxial stress conditions the Mohr–Coulomb parameters (φ′ = 37◦ and c′ =
0 MPa) can be converted to Drucker–Prager parameters as follows:

tan β = 6 sin φ′

3 − sin φ′ for φ′ = 37◦ → β = 55.7◦

d = 18c′ cos φ′

3 − sin φ′ for c′ = 0 → d = 0

The cap eccentricity parameter is chosen as R = 0.4. The initial cap position
(which measures the initial consolidation of the specimen) is taken as ε

pl
vol(0) =

0.0, and the cap hardening curve is as shown in Figure 6.9, as obtained from an
isotropic consolidation test on Ottawa sand. The transition surface parameter α =
0.05 is used. These parameters, summarized in Table 6.1, were used to reproduce
the stress–strain curves of Ottawa sand under two confining pressures, as shown
in Figure 6.8.

In this example we establish the load–displacement relationship for the 3 m ×
3 m footing. The bearing capacity of the footing can be obtained from the
load–displacement curve. The analysis is performed using two different numer-
ical formulations: (1) static analysis and (2) dynamic–explicit analysis with very
slow loading. Static analysis is generally used for problems with a statically applied
load, such as the present problem. It is also possible to analyze the problem at hand
using the dynamic–explicit option. This has to be done carefully. The loads must
be applied very slowly to avoid exciting the model. Note that explicit analyses
use very small time increments automatically to ensure stability, making them
computationally expensive.

In the beginning of the analysis, gravity loads and surcharge loads are applied
to the sand layer. These loads are very important because they will determine the
initial stresses in all soil elements. The soil behavior is stress dependent, and the cap
model used herein considers this important fact (Chapter 2). In both analyses the
foundation load is applied using a constant downward velocity boundary condition
at the top surface of the foundation with v = 6 cm/s for a duration of 10 seconds.
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The pressure–settlement curve for the static analysis and the dynamic–explicit
analysis are shown in Figure 6.14. Both analyses agree well up to the failure load.
Both analyses predicted approximately the same bearing capacity of 1350 kPa. For
reference, the bearing capacity of 1474 kPa predicted by Terzaghi’s equation [part
(a) of Example 6.3] is also shown in Figure 6.14. It is noted that the finite element
prediction of bearing capacity is slightly smaller than Terzaghi’s bearing capacity.
The reasons for this difference were described in Example 6.2. Figure 6.15 shows
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FIGURE 6.14 Load–displacement curve: comparison of FEM results with Terzaghi cal-
culation.

FIGURE 6.15 Plastic shear strain distribution at failure.
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FIGURE 6.16 Vertical stress distribution at failure.

the plastic shear strain contours in the sand layer at failure load, and Figure 6.16
shows the contours of vertical stresses in the sand layer at failure load.

6.4 MEYERHOF’S GENERAL BEARING CAPACITY EQUATION

Meyerhof (1963) developed a generalized bearing capacity equation that includes
correction factors for foundation depth, foundation shape, and for inclined loads:

qu = c′NcFcsFcdFci + qNqFqsFqdFqi + 1
2γBNγFγsFγdFγi (6.7)

where Nc, Nq, and Nγ are the bearing capacity factors:

Nq = tan2
(

45 + φ′

2

)
eπ tan φ′

Nc = (Nq − 1) cot φ′

Nγ = 2(Nq + 1) tan φ′

Fcs , Fqs , and Fγs are the shape factors:

Fcs = 1 + B

L

Nq

Nc

Fqs = 1 + B

L
tan φ′

Fγs = 1 − 0.4
B

L
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where L and B are the length and width of the foundation, respectively.
Fcd , Fqd , and Fγd are the depth factors:

For Df /B ≤ 1, use

Fcd = 1 + 0.4
Df

B

Fqd = 1 + 2 tan φ′(1 − sin φ′)2 Df

B

Fγd = 1

For Df /B > 1, use

Fcd = 1 + 0.4 tan−1 Df

B

Fqd = 1 + 2 tan φ′(1 − sin φ′)2 tan−1 Df

B

Fγd = 1

Fci , Fqi , and Fγi are the inclination factors:

Fci = Fqi =
(

1 − β
◦

90◦

)2

Fγi =
(

1 − β

φ′

)2

where β is the inclination of the load with respect to the vertical as shown in
Figure 6.17.

βββ

FIGURE 6.17 Inclined load.
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Example 6.4 Bearing Capacity of a Strip Footing with Inclined Load (a) Using
Meyerhof’s equation, calculate the bearing capacity of a 2-m-wide strip founda-
tion on a 14.5-m-thick homogeneous layer of Ottawa sand (c′ = 0 and φ′ = 37◦)
underlain by bedrock. The foundation is subjected to an inclined load making a
15◦ angle with the vertical as shown in Figure 6.18. The foundation is situated at
a depth Df = 0.5 m. The unit weight of soil is 19 kN/m3. (b) Solve part (a) using
the finite element method. Use the cap model to simulate sand behavior. Assume
that Ottawa sand has the properties described in Example 6.2. Compare the finite
element prediction of bearing capacity with that predicted by Meyerhof’s equation.

SOLUTION: (a) Meyerhof’s solution Let’s calculate the bearing capacity factors
Nc, Nq , and Nγ:

Nq = tan2
(

45 + 37◦

2

)
eπ tan 37◦ = 42.9

Nc = (42.9 − 1) cot 37◦ = 55.6

Nγ = 2(42.9 + 1) tan 37◦ = 66.2

For this strip foundation, calculate the shape factors Fcs , Fqs , and Fγs :

Fcs = 1 +
(

2

∞
)(

42.9

55.6

)
= 1

Fqs = 1 + 2

∞ tan 37◦ = 1

Fγs = 1 − 0.4

(
2

∞
)

= 1

15º

0.5 m

14.5 m

2 m

FIGURE 6.18
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For Df /B≤1, the depth factors Fcd , Fqd , and Fγd are

Fcd = 1 + 0.4

(
0.5

2

)
= 1.1

Fqd = 1 + 2(tan 37◦
)(1 − sin 37◦

)2
(

0.5

2

)
= 1.0597

Fγd = 1

The inclination factors Fci , Fqi , and Fγi are

Fci = Fqi =
(

1 − 15◦

90◦

)2

= 0.69

Fγi =
(

1 − 15◦

37◦

)2

= 0.35

The bearing capacity can be calculated using (6.7):

qu = (0)(55.6)(1)(1.1)(0.69) + (19)(0.5)(42.9)(1)(1.0597)(0.69)

+ ( 1
2

)
(19)(2)(66.2)(1)(1)(0.35) = 738 kPa

(b) Finite element solution (filename: Chapter6 Example4.cae) This example
presents a limit equilibrium solution for a layer of sand loaded by a rigid,
perfectly rough strip footing with inclined loading. The cap model (modified
Drucker–Prager model with a cap, Chapter 2), with parameters matched to the
classical Mohr–Coulomb yield model parameters c′ and φ′, is used to simulate the
behavior of the sand. The elastic parameters and the cap model parameters of the
sand used in this analysis are identical to those of Ottawa sand used in Table 6.1.
The concrete foundation is assumed to be linear elastic with a Young’s modulus of
1435 MPa and a Poisson ratio of 0.2. The problem geometry, boundary conditions,
and materials are identical to those of part (a) of Example 6.4, providing a direct
means to compare the finite element analysis results with Meyerhof’s solution.

The plane strain finite element model analyzed is shown in Figure 6.19. The
sand layer is 15 m deep and 30 m wide. The strip foundation is 2 m wide and
0.5 m thick. The model considers the entire sand layer and foundation because
of the inclined load that makes the system asymmetric. The strip foundation has
perfect contact with the soil—they share the same nodes at the sand–foundation
interface. Reduced-integration, bilinear, plane strain quadrilateral elements are used
for the sand and the concrete foundation. The base of the sand layer is fixed in all
directions. All vertical boundaries are fixed in the horizontal direction but free in the
vertical direction. It is noted that the mesh is finer in the vicinity of the foundation
since that zone is the zone of stress concentration. No mesh convergence studies
have been performed. However, the dimensions of the sand layer are chosen in a
way that the boundary effect on foundation behavior is minimized.
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FIGURE 6.19 Finite element discretization.

In the beginning of the analysis, gravity loads are applied to the sand layer.
These loads are very important because they will determine the initial stresses in
all soil elements. The soil behavior is stress dependent, and the cap model used
herein considers this important fact (Chapter 2). During this step of analysis, the
“geostatic” command is invoked to make sure that equilibrium is satisfied within
the sand layer. The geostatic option makes sure that the initial stress condition in
any element within the sand layer falls within the initial yield surface of the cap
model. A monotonically increasing point load having a horizontal and a vertical
component is applied at the center of the foundation. The resultant of these two
components is inclined at a 15◦ angle from the vertical.

In this example we establish the load–displacement relationship for the 2-m-
wide strip footing. The bearing capacity of the footing can be obtained from the
load–displacement curve as shown in Figure 6.20. In this figure, the initial and final
straight-line portions of the curve are extended. The bearing capacity of the footing
is located at the point where those two extensions meet. As shown in Figure 6.20,
the finite element analyses predicted a bearing capacity of approximately 675 kPa.
The bearing capacity of 738 kPa predicted by Meyerhof’s equation [part (a) of
Example 6.4] is also shown in the figure. It is noted that the finite element pre-
diction of bearing capacity is slightly smaller than Meyerhof’s bearing capacity.
This difference can be attributed to several causes, the most important of which is
that Meyerhof’s equation assumes that the soil is a rigid–perfectly plastic material
that fails abruptly when the bearing capacity of the soil is reached. In contrast, the
present finite element analysis assumes that the soil is an elastoplastic material that
deforms under applied loads, as opposed to a rigid material that does not deform.
Furthermore, the soil can yield in a progressive manner, due to the nature of the
finite element formulation, where elements can yield in a gradual and progressive
manner: A yielding element causes an element next to it to yield, and so on until
a slip surface is realized.
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FIGURE 6.20 Load–displacement curve of a strip footing with an inclined load.

6.5 EFFECTS OF THE WATER TABLE LEVEL ON BEARING CAPACITY

Both Terzaghi’s equation and Meyerhof’s equation need to be adjusted when the
water table level is close to the foundation. There are three cases to be considered:
Case 1 is when the water table level is above the foundation level, case 2 is when
the water table level is between the foundation level and a distance B (= width
of foundation) below the foundation level, and case 3 is when the water level is
lower than a distance B below the foundation level. The three cases are illustrated
in Figure 6.21.

X
sat

γγ

γ γ

γs

satγs

1XX
X2XX

BX1 B

B

DfD

(a) (b) (c)

FIGURE 6.21 Effects of groundwater table level on bearing capacity: (a) case 1; (b) case
2; (c) case 3.
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For case 1, two adjustments need to be made in (6.1) and (6.7). First, the
surcharge q = γDf in the second term of both equations needs to be replaced
by the effective surcharge q = X1γ + X2(γsat − γw), where X1 and X1 are as
defined in Figure 6.21a. Second, the unit weight of soil, γ, needs to be replaced
by γ′ = γsat − γw in the third term of both equations.

For case 2 we need to make only one adjustment in (6.1) and (6.7). The unit
weight of soil, γ, in the third term of both equations needs to be replaced by
γ = γ′ + (X1/B)(γ − γ′), where γ′ = γsat − γw. The distance X1 is defined in
Figure 6.21b.

For case 3 (Figure 6.21c) we do not need to make any adjustments. In this case
the water table is too deep to have an effect on the bearing capacity.

PROBLEMS

6.1 Using Terzaghi’s equation, calculate the bearing capacity of a 2.0-m-wide strip
foundation on a thick homogeneous layer of sand with c′ = 0 and φ′ = 37◦.
The foundation is situated at a depth of 2 m. The unit weight of the sand is
18.14 kN/m3. The groundwater table is very deep.

6.2 Solve Problem 6.1 using the finite element method. Compare the finite element
analysis results with the analytical solution obtained in Problem 6.1. The
concrete foundation is assumed to be linear elastic with a Young’s modulus
of 1435 MPa and a Poisson ratio of 0.2. The elastic response of the sand is
assumed to be linear and isotropic, with a Young’s modulus of 182 MPa and
a Poisson ratio of 0.3. The elastoplastic behavior of the sand can be simulated
using the cap model. Assume the same cap model parameters as those used
in Table 6.1.

6.3 Use Meyerhof’s equation to calculate the bearing capacity of a 2 m × 4 m
foundation on a 30-m-thick homogeneous layer of sand, with c′ = 0 and φ′ =
37◦, underlain by bedrock. The foundation is situated at a depth Df = 2 m.
The unit weight of the sand is 19 kN/m3. The groundwater table is very deep.

6.4 Solve Problem 6.3 using the finite element method. Use the cap model to
simulate sand behavior assuming that the sand has the properties described
in Example 6.2. Compare the finite element prediction of bearing capacity
with that predicted by Meyerhof’s equation in Problem 6.3. (Hint : Use a
three-dimensional simulation.)

6.5 Use Meyerhof’s equation to calculate the bearing capacity of a 2-m-wide strip
foundation on a 20-m-thick homogeneous layer of sandy silt, with c′ = 20 kPa
and φ′ = 30◦, underlain by bedrock. The foundation is situated at a depth
Df = 1 m and subjected to an inclined loading making 20◦ angle with the
vertical. The unit weight of the sand is 18 kN/m3. The groundwater table is
very deep.
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6.6 Solve Problem 6.5 using the finite element method. Compare the finite ele-
ment analysis results with the analytical solution obtained in Problem 6.5. The
concrete foundation is assumed to be linear elastic with a Young’s modulus
of 2000 MPa and a Poisson ratio of 0.2. The elastic response of the sandy silt
is assumed to be linear and isotropic, with a Young’s modulus of 200 MPa
and a Poisson ratio of 0.3. The elastoplastic behavior of the sandy silt can be
simulated using the cap model. Calculate d and β for plane strain condition
using c′ = 20 kPa and φ′ = 30◦. Assume that R = 0.3, e0 = 1, K = 1, and
α = 0. Use the hardening parameters given in Figure 6.9. (Hint : Use a plane
strain condition.)

6.7 For the 3.0-m-wide strip foundation shown in Figure 6.22, calculate the bear-
ing capacity considering the three cases indicated. In the winter the water
table is 1.5 m below the ground surface. The water table drops to 4 m below
the ground surface in the spring, and to 6.5 m in the summer. The foundation
is situated at a depth of 3 m and is supported by a thick homogeneous layer
of sandy silt with c′ = 15 kPa and φ′ = 33◦. The saturated unit weight of the
sandy silt is 19 kN/m3, and its dry unit weight is 17.5 kN/m3.

6.8 Calculate the bearing capacity of a 2-m-wide strip foundation situated on top
of a 4-m-high embankment shown in Figure 6.23. The embankment soil is a
compacted sandy silt with c′ = 40 kPa and φ′ = 20◦. A thick layer of a very
stiff clay lies below the embankment. The concrete foundation is assumed to
be linear elastic with a Young’s modulus of 2000 MPa and a Poisson ratio
of 0.2. The elastic response of the sandy silt is assumed to be linear and

(c)c(b)bb(a)a

1.5 m

1 m
3.5 m

3 m

3 m

FIGURE 6.22 Groundwater level in (a) winter, (b) spring, and (c) summer.
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isotropic, with a Young’s modulus of 200 MPa and a Poisson ratio of 0.3.
The elastoplastic behavior of the sandy silt can be simulated using the cap
model. Calculate d and β for plane strain condition using c′ = 40 kPa and
φ′ = 20◦. Assume that R = 0.3, e0 = 1, K = 1, and α = 0. Use the hardening
parameters given in Figure 6.9. The groundwater table is very deep. (Hint :
Use a plane strain condition.)



CHAPTER 7

LATERAL EARTH PRESSURE
AND RETAINING WALLS

7.1 INTRODUCTION

Retaining walls are structural members used to support vertical or nearly vertical
soil backfills. This is usually needed when there is a change of grade. A retaining
wall, for example, can be used to retain the backfill required to widen a roadway
as shown in Figure 7.1a or to retain a backfill that is used to support a structure
as shown in Figure 7.1b. There are several types of retaining walls, including
the traditional gravity, semigravity, cantilever, and counterfort retaining walls that
are made of plain and reinforced concrete (Figure 7.2). Retaining walls can also
be constructed from other materials, such as gabions, reinforced earth, steel, and
timber. Nevertheless, all retaining walls have to be designed to resist the external
forces applied, and that includes lateral earth pressure, surcharge load, hydrostatic
pressure, and earthquake loads.

There are three possible types of lateral earth pressure that can be exerted on
a retaining wall: at-rest pressure, active pressure, and passive pressure. At-rest
earth pressure occurs when the retaining wall is not allowed to move away or
toward the retained soil. Active earth pressure occurs when the retaining wall is
permitted to move away from the retained soil. The active earth pressure produces a
destabilizing earth force behind retaining walls. Passive earth pressure, on the other
hand, develops when the retaining wall is forced to move toward the retained soil.

Granular soils are usually used as backfill materials behind retaining walls
because of their high permeability (freely draining materials). Using granular fills
along with weep holes (small openings in the retaining wall) prevents the accu-
mulation of hydrostatic pressures during a rainfall, for example. Other types of
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FIGURE 7.1 Retaining walls.
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FIGURE 7.2 Types of retaining walls.
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drains are available, including perforated pipes that are commonly installed at the
bottom of the granular fill directly behind the heel of the retaining wall to facilitate
drainage. Soils such as sand, gravel, silty sand, and sand with gravel are good
backfill materials. Cohesive soils are not desirable as backfill materials because of
their low permeability.

In Chapter 3 you have learned how to calculate the variation of the effective
vertical stress in a soil strata. Now we can calculate the effective lateral earth
pressure by multiplying the effective vertical stress by an appropriate lateral earth
pressure coefficient: at-rest, active, or passive. The at-rest lateral earth pressure
coefficient, K0, can be estimated using the empirical equation K0 = 1 − sin φ′
(Jaky, 1944), where φ′ is the internal friction angle of the backfill soil. The
active lateral earth pressure coefficient, Ka , can be calculated using the equation
Ka = (1 − sin φ′)/(1 + sin φ′), whereas the passive lateral earth pressure coeffi-
cient, Kp, can be calculated using the equation Kp = (1 + sin φ′)/(1 − sin φ′). It
can be seen from these equations that both the at-rest earth pressure coefficient
and the active earth pressure coefficient are smaller than 1, and the passive earth
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FIGURE 7.3 Lateral earth pressure on a retaining wall.
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pressure coefficient is greater than 1. This means that in soils the lateral stress
is not equal to the vertical stress for any possible condition: at-rest, active, and
passive. This is unlike the stresses inside a fluid, which are equal in all directions,
as you have learned in fluid mechanics.

If water is present in the backfill behind a retaining wall, the water pressure
should be added to the effective lateral earth pressure exerted on the wall. Figure 7.3
shows details of a soil element in contact with a retaining wall. Two types of
pressure are exerted on the wall by this fully saturated soil element located at
some distance below the water table. The first pressure is the one exerted by the
grains and denoted as σ′

h in the figure. This is by definition the intergranular stress,
known also as the effective stress. The other type of pressure is the pore water
pressure caused by the water filling the interconnected voids (pores) and denoted
by u in the same figure. The retaining wall “feels” both σ′

h and u, therefore, these
two pressures should be considered when calculating the lateral earth pressure
exerted on a retaining wall.

7.2 AT-REST EARTH PRESSURE

Consider a soil element in contact with a retaining wall that is restricted from
lateral movement (Figure 7.4a). The at-rest lateral earth pressure is calculated by
multiplying the effective vertical stress by the coefficient of lateral earth pressure
at rest, K0. This coefficient can be determined experimentally for a given soil by
restraining the soil from lateral movement and subjecting it to an effective vertical
stress σ′

v . This can be done using a rigid container filled with soil. The resulting
effective horizontal stress, σ′

h, exerted on the sides of the rigid container can be
measured by means of a load or pressure cell. Consequently, the coefficient of
lateral earth pressure at-rest can be calculated as

K0 = σ′
h

σ′
v

(7.1)

The stress state in the soil element is represented by a Mohr’s circle as shown
in Figure 7.4b. Note that the major principal stress is the effective vertical stress,
whereas the minor principal stress is the effective lateral stress because K0 is less
that 1. In the absence of experimental results, one can use the empirical equation
by Jaky (1944) to estimate K0:

K0 = 1 − sin φ′ (7.2)

where φ′ is the internal friction angle of the soil.
Let’s consider the retaining wall supporting a dry fill of a height H as shown

in Figure 7.5a. The wall is restricted from any lateral motion: it is not allowed to
move away or toward the backfill. Therefore, the lateral earth pressure exerted by
the backfill against the retaining wall can be regarded as at-rest lateral earth pressure
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FIGURE 7.4 At-rest lateral earth pressure.

that can be calculated using (7.1). Note that the effective stresses in this case are
the same as the total stresses because of the absence of water (the water table is
deep). The pressure felt by the wall is the effective lateral earth pressure only.

From (7.1) we can write σ′
h = K0σ

′
v . But σ′

v = γz, where γ is the unit weight of
the backfill soil and z is the depth measured from the top surface of the back-
fill. Combining the two equations, we get σ′

h = K0γz. This equation indicates
that the effective lateral earth pressure increases linearly with depth as shown in
Figure 7.5b. At the top surface, σ′

h = 0 because z = 0. At the bottom of the retain-
ing wall, σ′

h = K0γH because z = H . The at-rest lateral earth pressure distribution
is therefore triangular, as shown in Figure 7.5b. The at-rest lateral force (P0) exerted
on the wall is the area of the lateral earth pressure triangle: P0 = 1

2K0γH 2. The
point of application of P0 is located at a distance of H/3 from the bottom of the
retaining wall because of the triangular pressure distribution.

When water is present within the backfill, as may happen during a rainfall
with the drains clogged, the effect of pore water pressure needs to be accounted
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FIGURE 7.5 At-rest lateral earth pressure for a backfill without surcharge: (a, b) low
water table; (c, d) high water table; (e, f ) intermediate water table.

for. Figure 7.5c shows a retaining wall supporting a backfill with a water table
that is coincident with the top surface of the fill. In this case the lateral pressure
exerted on the wall consists of two parts: the effective lateral earth pressure (at
rest) and the pore water pressure. This is illustrated in Figure 7.5d, in which the
effective lateral earth pressure and the pore water pressure are plotted separately.
The effective lateral earth pressure is σ′

h = K0(γsat − γw)z. This equation indicates
that the effective lateral earth pressure increases linearly with depth. At the top
surface, σ′

h = 0 because z = 0. At the bottom of the retaining wall, σ′
h = K0(γsat −

γw)H because z = H . The pore water pressure (u) varies linearly from u = 0 at
z = 0 to u = γwH at z = H . The at-rest lateral force (P0) exerted on the wall is
the sum of the area of the effective lateral earth pressure triangle and the area of
the pore water pressure triangle: P0 = 1

2K0(γsat − γw)H 2 + 1
2γwH 2. The point of

application of P0 is located at a distance of H /3 from the bottom of the retaining
wall because of the triangular distribution of both the effective lateral earth pressure
and the pore water pressure.
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Figure 7.5e shows a retaining wall supporting a fill with a water table that is
at a distance H1 below the top surface of the fill. In this case we can assume that
the soil below the water table is fully saturated. The distribution of the effective
lateral earth pressure and of the pore water pressure are shown in Figure 7.5f .

At z = 0:

σ′
h = 0 and u = 0

At z = H1:

σ′
h = K0γH1 and u = 0

At z = H1 + H2 = H :

σ′
h = K0γH1 + K0(γsat − γw)H2 and u = γwH2

To calculate the lateral force, we can simplify the pressure distribution using
triangular and rectangular shapes as shown in Figure 7.5f . The area of each shape
can be calculated separately to give us the lateral force that must be applied at the
centroid of the respective shape. The sum of these lateral forces is the total lateral
force exerted on the wall. The point of application of the total lateral force can be
calculated by taking the sum of the moments of all forces about the heel of the
retaining wall and equating that to the moment of the total lateral force (resultant)
about the heel. This will be illustrated in Example 7.1.

A uniform pressure (surcharge) is sometimes applied at the top surface of the
backfill. For example, it is customary to apply a uniform pressure of 15 to 20 kPa
to simulate the effect of traffic loads on a retaining wall. A uniform pressure q

applied at the top surface causes an increase in the at-rest lateral earth pressure
equal to K0q. Figure 7.6 shows how to account for the surcharge effects for a
retaining wall with a dry backfill, a submerged backfill, and a partially submerged
backfill.

Example 7.1 As shown in Figure 7.7a, a 4.5-m-high retaining wall has a sandy
backfill with c′ = 0, φ′ = 37◦

, γ = 17 kN/m3, and γsat = 19 kN/m3. The water
table is 1.5 m below the surface of the backfill. Calculate the at-rest lateral force
exerted on a 1-m-long section of the retaining wall. Assume that the sand below
the water table is fully saturated.

SOLUTION: Figure 7.7b shows the distribution of the effective lateral earth pres-
sure and the distribution of the pore water pressure against the retaining wall.
The coefficient of lateral earth pressure at rest is calculated using Jaky’s equation,
K0 = 1 − sin φ′ = 1 − sin 37◦ = 0.4. Thus:

At z = 0:

σ′
h = 0 and u = 0
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(a) (e)(c)

(b) (f)(d)

σ'h = K0q

1 2

σ'h = K0q + K0H

q (kN/m2)

Water Table

H γ, φ', c'

q (kN/m2)

Water Table 

H2

H1 γ, φ', c'

γsat, φ', c'

q (kN/m2)

Water Table 

γsat, φ', c'H

0

1

2
3

Hγwσ'h = K0q + K0H(γsat − γw)

σ'h = K0q

0

4

5

3

1

2

H2γwσ'h = K0q + K0H1γ

σ'h = K0q + K0H1γ

+ K0H2(γsat − γw)

σ'h = K0q

FIGURE 7.6 At-rest lateral earth pressure for a backfill with surcharge: (a, b) low water
table; (c, d) high water table; (e, f ) intermediate water table.

At z = 1.5 m:

σ′
h = K0γH1 = (0.4)(17)(1.5) = 10.2 kN/m2 and u = 0

At z = 4.5 m:

σ′
h = K0γH1 + K0(γsat − γw)H2 = (0.4)(17)(1.5) + 0.4(19 − 9.81)(3)

= 21.2 kN/m2 and u = γwH2 = (9.81)(3) = 29.4 kN/m2

The at-rest lateral earth pressure diagram is divided into two triangles and one
rectangle, as indicated in Figure 7.7b. The pore water pressure distribution is tri-
angular by nature (does not need further simplification). The lateral forces P1, P2, P3,
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(a)

Water Table

γ = 17 kN/m3

φ' = 37˚

φ' = 37˚

c' = 0

c' = 0

H1 = 1.5 m

H2 = 3 m

γsat = 19 kN/m3

(b)

0

σ'h = 21.2 kN/m2

0

σ'h = 10.2 kN/m2

3

1

2

4

1.5 m

P2 = 30.6 kN

P3 = 16.5 kN

1 m1 m

0.5m
P1 = 7.65 kN

K0 = 1 − sin 37˚ = 0.4

P0 = 98.85 kN

y

HeelHeel

P4 = 44.1 kN

u = 29.4 kN/m2

FIGURE 7.7 A 4.5-m-high retaining wall with a sandy backfill.

and P4 are equal to their respective areas denoted as areas, 1, 2, 3, and 4 in the figure:

P1 = (1/2)(10.2 kN/m2)(1.5m)(1m) = 7.65 kN (for a 1-m-long section)

P2 = (10.2 kN/m2)(3m)(1m) = 30.6 kN

P3 = (1/2)(11 kN/m2)(3m)(1m) = 16.5 kN

P4 = (1/2)(29.4 kN/m2)(3m)(1m) = 44.1 kN

The at-rest lateral force is

P0 = P1 + P2 + P3 + P4 = 7.65 + 30.6 + 16.5 + 44.1 = 98.85 kN

The location (y) of the point of application of the resultant P0, measured from the
heel of the retaining wall, can be calculated by taking the moment of P0 about
the heel and equating that to the sum of the moments of P1, P2, P3, and P4 about
the same point:

(98.85)y = (7.65)(3 + 0.5) + (30.6)(1.5) + (16.5)(1) + (44.1)(1) → y = 1.35 m

7.3 ACTIVE EARTH PRESSURE

The active earth pressure is a destabilizing pressure that occurs when the retaining
wall is allowed to move away from the retained soil. The active earth pressure
condition will develop only if the wall moves a sufficient distance away from the
backfill. The lateral outward movement required to mobilize the full active pressure
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condition is approximately 0.001H for loose sand and 0.04H for soft clay, where
H is the height of the wall. The active earth pressure distribution can be calculated
using Rankine theory or Coulomb theory.

7.3.1 Rankine Theory

The Rankine active earth pressure theory (Rankine, 1857) assumes that the soil
behind a retaining wall is in a condition of incipient failure. Every element within
the sliding wedge, shown in Figure 7.8a, is on the verge of failure as depicted by
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FIGURE 7.8 Rankine active lateral earth pressure.
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the Mohr’s circle, which is tangent to the Mohr–Coulomb failure criterion as shown
in Figure 7.8b. This Mohr’s circle represents the stress conditions in a soil element
located at a depth z below the top surface of the backfill. For reference, Mohr’s
circle for the at-rest condition is also shown in the figure. The at-rest stress con-
dition occurs when the wall is stationary. When the wall starts moving away from
the backfill, the lateral stress, σ′

h, decreases while the vertical stress, σ′
v , remains

essentially constant. The limiting condition occurs when the Mohr–Coulomb fail-
ure criterion becomes tangent to Mohr’s circle, at which condition the lateral stress
reaches its minimum possible value, termed the active lateral stress σ′

a .
The Mohr’s circle shown in Figure 7.8b predicts two sets of failure planes

with θ = ±(45◦ + φ′/2). These two families of failure planes are also shown in
Figure 7.8a and c. To simplify the analysis, Rankine theory assumes that there is
no adhesion or friction between the wall and the backfill soil, the retaining wall
is vertical, and the backfill soil has a horizontal surface. From the limiting failure
condition represented by Mohr’s circle shown in Figure 7.9, we can write

sin φ′ = OB

OA
= (σ′

v − σ′
a)/2

c′ cot φ′ + (σ′
v + σ′

a)/2
(7.3)

After some manipulation of (7.3), we can show that

σ′
a = σ′

v tan2
(

45◦ − φ′

2

)
− 2c′ tan

(
45◦ − φ′

2

)
(7.4)
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FIGURE 7.9 Mohr’s circle for active lateral earth pressure conditions.
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or

σ′
a = Kaσ

′
v − 2c′√Ka (7.5)

where Ka is the active earth pressure coefficient, given by

Ka = tan2
(

45◦ − φ′

2

)
(7.6)

For the case of a moist backfill soil with a deep water table (Figure 7.10a), the
effective vertical stress can be calculated as σ′

v = γz, where γ is the moist unit
weight of the backfill soil. Substituting this equation into (7.5) yields

σ′
a = Kaγz − 2c′√Ka (7.7)

Figure 7.10b shows the active earth pressure distribution exerted on the retaining
wall. The pressure is divided into two parts: a positive part, Kaγz, and a negative
part, −2c′√Ka [consistent with (7.7)]. The total earth pressure is the sum of the
two. Note that there is a tension zone in the backfill soil near the top of the retaining
wall, as indicated by the active earth pressure distribution shown in Figure 7.10b.
This causes a tension crack that is usually observed at the top of a cohesive backfill
immediately behind the retaining wall. The depth of the tension crack, Zc, can be
calculated by setting σ′

a equal to zero in (7.7):

Zc = 2c′

γ
√

Ka

(7.8)

Water Table 

γ , φ′, c′H

(a) (b)

σ′a = KaHγ

0

− =

Zc

2c′√Ka

2c′√Ka

−2c′√Ka

σ′a = KaHγ − 2c′√Ka

FIGURE 7.10 Rankine active lateral earth pressure for a cohesive backfill without sur-
charge.
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Figure 7.11a shows a retaining wall supporting a fill with a water table located at a
distance H1 below the top surface of the fill. A uniform pressure q is applied at the
top surface of the backfill. The wall is allowed to move away from the soil, thus,
mobilizing the active earth pressure. Let’s assume that the soil below the water
table is fully saturated. The distribution of the effective lateral earth pressure and
the pore water pressure are shown in Figure 7.11b.

At z = 0:

σ′
a = Kaq − 2c′√Ka and u = 0

At z = H1:

σ′
a = Kaq + KaH1γ − 2c′√Ka and u = 0

At z = H1 + H2 = H :

σ′
h = Kaq + KaγH1 + Ka(γsat − γw)H2 − 2c′√Ka and u = γwH2

To calculate the lateral force, we can simplify the pressure distribution using tri-
angular and rectangular shapes as was done in Example 7.1. The area of each shape
can be calculated separately to give us the lateral force that must be applied at the
centroid of the respective shape. The sum of these lateral forces is the total lateral
force exerted on the wall. The point of application of the total lateral force can be

(a)

0

σ′a = Kaq + KaH1γ
+ KaH2 (γsat − γw)

σ′a = Kaq

σ′a = Kaq + KaH1γ

(b)

− + =

q (kN/m2)

Water Table 

H1

H2

γ, φ′, c′

γsat, φ′, c′

2c′√Ka

2c′√Ka
σ′a = Kaq − 2c′√Ka

σ′a = Kaq + KaH1γ − 2c′√Ka

σ′a = Kaq + KaH1γ
+ KaH2 (γsat − γw) − 2c′√Ka
+ H2γw

H2γw

FIGURE 7.11 Rankine active lateral earth pressure for a cohesive backfill with surcharge.
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calculated by taking the sum of the moments of all forces about the heel of the
retaining wall and equating that to the moment of the total lateral force (resultant)
about the heel.

7.3.2 Coulomb Theory

The Coulomb active earth pressure theory (Coulomb, 1776) assumes that a soil
wedge with a failure plane making a critical angle θcr with the horizontal is in a
condition of incipient failure, as shown in Figure 7.12. The intact wedge is about
to slide down the failure plane, thus generating active earth pressure against the
retaining wall. From statics, the wedge can be treated as a particle that is subjected
to three coplanar forces, W , P , and R, where W is the self-weight of the wedge,
which can be determined easily by multiplying the area of the wedge with the unit
weight of the backfill; P is the resultant of the wall reaction against the soil; and
R is the soil reaction against the sliding wedge. The force P makes an angle δ

with the normal to the back face of the wall (the face in contact with the backfill).
The angle δ is the wall–soil interface friction angle, which can be determined from
laboratory tests or can be assumed as a fraction of φ′; usually, you can assume that
δ ≈ 2

3φ′. The force R makes an angle φ′ with the normal to the failure plane. The
internal friction angle φ′ is assumed to be mobilized at the interface between the
sliding wedge and the underlying soil.

It is to be noted that in Coulomb theory the backfill soil is assumed to be failing
only along a failure plane, whereas in Rankine theory every element within the
backfill soil is on the verge of failure, as discussed earlier. Also, Coulomb theory
accounts for three factors that were not accounted for in the original Rankine theory:
the wall–soil interface friction signified by the friction angle δ in Figure 7.12, the

P
R

P = Pa

W

90°

90°

P

θ1 θcr θθ2β

δ

φ′

θ3

α

= 0 → θ = θcr and P = Pa
dP
dθ

FIGURE 7.12 Coulomb active lateral earth pressure.
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sloping backfill soil with an angle α, and the battered back face of the retaining
wall with an angle β.

As shown in Figure 7.12, Coulomb theory considers a trial wedge with a failure
plane making an angle θ with the horizontal. At failure, two equilibrium equations
can be written (along the x and y axes) assuming an “impending motion” condition:
that is, the wedge is about to slide down the failure plane. Those two equations
involve three unknown: P , R, and θ; we need a third equation involving some (or
all) of the three variables to solve for the three unknowns. Note that P, W , and
R will vary if a different angle θ is used. Coulomb theory searches for the angle
θ = θcr that yields the maximum earth pressure P = Pa . Thus,

dP

dθ
= 0 (7.9)

The solution of (7.9) will yield the angle θcr, and subsequently, the corresponding
maximum earth pressure Pa can be calculated.

Let’s consider the simple case shown in Figure 7.13, in which the retaining wall
has a vertical back face (β = 90◦) with a frictionless surface (δ = 0) and a horizontal
backfill soil (α = 0). Note that these are the assumptions used in Rankine theory,
and the following Coulomb solution can be compared directly with the Rankine
solution described in Section 7.3.1. The height of the wall is H and the friction
angle of the granular backfill soil is φ′ (c′ = 0). Consider a wedge with an angle
θ as shown in Figure 7.13. The closed force triangle shown in the same figure
indicates equilibrium of the wedge that is on the verge of failure. The weight of
the wedge is function of the angle θ as follows:

W = γH 2

2 tan θ
(7.10)

P

W

90°

P

R

R

W

P = Pa

P

θ

θ − φ′

θcr θ
β = 90°

δ = 0

φ′

α = 0

= 0 → θ = θcr and P = Pa
dP
dθ

θ
−

φ′

FIGURE 7.13 Coulomb active lateral earth pressure for a frictionless vertical wall and a
horizontal backfill.
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For horizontal and vertical equilibrium, respectively, the following equations must
be satisfied:

P = R sin(θ − φ′) (7.11)

W = R cos(θ − φ′) (7.12)

Substitute (7.10) into (7.12):

γH 2

2 tan θ
= R cos(θ − φ′) (7.13)

Dividing (7.11) by (7.13), we get

P = γH 2

2 tan θ
tan(θ − φ′) (7.14)

Combining (7.9) and (7.14) yields

dP

dθ
= 0 → θ = θcr = 45◦ + φ′

2
(7.15)

Substituting (7.15) into (7.14) yields

Pa = γH 2

2
tan2

(
45◦ − φ′

2

)
(7.16)

But for a granular backfill, the active force Pa is given by

Pa = Ka

γH 2

2
(7.17)

Substituting (7.17) into (7.16), we get

Ka = tan2
(

45◦ − φ′

2

)
(7.18)

Equation (7.18) is identical to (7.6), which was obtained from Rankine theory.
The Coulomb active earth pressure coefficient for the general case shown in

Figure 7.12 is a more complicated expression that depends on the angle of the
back face of the wall, the soil–wall friction, and the angle of backfill slope:

Ka = sin2(β + φ′)

sin2 β sin(β − δ)

[
1 +

√
sin(φ′ + δ) sin(φ′ − α)

sin(β − δ) sin(α + β)

]2 (7.19)



PASSIVE EARTH PRESSURE 249

7.4 PASSIVE EARTH PRESSURE

Passive earth pressure occurs when a retaining wall is forced to move toward the
retained soil. Passive earth pressure condition will develop if the wall moves a
sufficient distance toward the backfill. The lateral inward movement required to
mobilize the full passive pressure condition is approximately 0.01H for loose sand
and 0.05H for soft clay, where H is the height of the wall. The passive earth
pressure distribution can be calculated using Rankine theory or Coulomb theory.

7.4.1 Rankine Theory

Rankine theory assumes that there is no adhesion or friction between the wall and
the backfill soil, the retaining wall is vertical, and the backfill soil has a horizontal
surface. The Rankine passive earth pressure theory assumes that every soil element
within the sliding wedge (Figure 7.14a) is on the verge of failure, as depicted
by Mohr’s circle shown in Figure 7.14b. This Mohr’s circle represents the stress
conditions in a soil element located at a depth z below the top surface of the
backfill. For reference, Mohr’s circle for the at-rest condition is also shown in
the figure. The at-rest stress condition occurs when the wall is stationary. When
the wall starts moving toward the backfill, the lateral stress, σ′

h, increases while
the vertical stress, σ′

v , remains essentially constant. The limiting condition occurs
when the Mohr–Coulomb failure criterion becomes tangent to Mohr’s circle; at
this condition the lateral stress reaches its maximum possible value, termed the
passive lateral stress σ′

p. Mohr’s circle predicts two sets of failure planes with
θ = ±(45◦ − φ′/2), as indicated in Figure 7.14a and b.

From the limiting failure condition represented by the Mohr’s circle shown in
Figure 7.14b, we can show that

σ′
p = σ′

v tan2
(

45◦ + φ′

2

)
+ 2c′ tan

(
45◦ + φ′

2

)
(7.20)

or

σ′
p = Kpσ′

v + 2c′√Kp (7.21)

where Kp is the passive earth pressure coefficient, given by

Kp = tan2
(

45◦ + φ′

2

)
(7.22)

For the case of a moist backfill soil with a deep water table (Figure 7.15a), the
effective vertical stress can be calculated as σ′

v = γz, where γ is the moist unit
weight of the backfill soil. Substituting this equation into (7.21) yields

σ′
p = Kpγz + 2c′√Kp (7.23)
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FIGURE 7.14 Rankine passive lateral earth pressure.

Figure 7.15b shows the passive earth pressure distribution exerted on the retaining
wall. The pressure is divided into two parts: Kpγz and 2c′√Kp [consistent with
(7.23)]. The total earth pressure is the sum of the two.

Figure 7.16a shows a retaining wall supporting a fill with a water table located
a distance H1 below the top surface of the fill. A uniform pressure q is applied at
the top surface of the backfill. The wall is forced toward the soil, thus mobilizing
passive earth pressure. Let’s assume that the soil below the water table is fully
saturated. The distribution of the effective lateral earth pressure and the pore water
pressure are shown in Figure 7.16b.

At z = 0:

σ′
p = Kpq + 2c′√Kp and u = 0
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Water Table 
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(a) (b)

0

+ =

2c′√Kp

2c′√Kp

2c′√Kp

σ′ = KpHγp 2c′√Kpσ′ = KpHγ +p
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FIGURE 7.15 Rankine passive lateral earth pressure for a cohesive backfill without sur-
charge.
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FIGURE 7.16 Rankine passive lateral earth pressure for a cohesive backfill with surcharge.

At z = H1:

σ′
p = Kpq + KpγH1 + 2c′√Kp and u = 0

At z = H1 + H2 = H :

σ′
p = Kpq + KpγH1 + Kp(γsat − γw)H2 + 2c′√Kp and u = γwH2
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To calculate the lateral force we can simplify the pressure distribution using tri-
angular and rectangular shapes as was done in Example 7.1. The area of each shape
can be calculated separately to give us the lateral force that must be applied at the
centroid of the respective shape. The sum of these lateral forces is the total lateral
force exerted on the wall. The point of application of the total lateral force can be
calculated by taking the sum of the moments of all forces about the heel of the
retaining wall and equating that to the moment of the total lateral force (resultant)
about the heel.

7.4.2 Coulomb Theory

The Coulomb passive earth pressure theory assumes that a soil wedge with a failure
plane making a critical angle θcr with the horizontal is in the condition of incipient
failure as shown in Figure 7.17. The critical wedge is about to slide up the failure
plane, thus generating a passive earth pressure against the retaining wall. The wedge
can be treated as a particle that is subjected to three coplanar forces, W , P , and
R, where W is the self-weight of the wedge, which can be determined easily by
multiplying the area of the wedge with the unit weight of the backfill; P is the
resultant of the wall reaction against the soil; and R is the soil reaction against the
sliding wedge. The force P makes an angle δ with the normal to the back face
of the wall (the face in contact with the backfill). The angle δ is the wall–soil
interface friction angle, which can be determined from laboratory tests or can be
assumed as a fraction of φ′; usually, you can assume that δ ≈ 2

3φ′. The force R

makes an angle φ′ with the normal to the failure plane. The internal friction angle
φ′ is assumed to be mobilized at the interface between the sliding wedge and the
underlying soil.

It is to be noted that Coulomb theory accounts for three factors that were not
accounted for in the original Rankine theory: the wall–soil interface friction signi-
fied by the friction angle δ in Figure 7.17, the sloping backfill soil with an angle

P = Pp

W

90°

90°

P

P
R

θ1 θcr θθ2β

δ

φ′

θ3

α

= 0 → θ = θcr and P = Pp
dP
dθ

FIGURE 7.17 Coulomb passive lateral earth pressure.
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α, and the battered back face of the retaining wall with an angle β. As shown in
Figure 7.17, Coulomb theory considers a trial wedge with a failure plane making
an angle θ with the horizontal. At failure, two equilibrium equations can be written
(along the x and y axes) assuming an “impending motion” condition. Those two
equations involve three unknowns, P , R, and θ; thus, there is a need for a third
equation involving some (or all) of the three variables. Note that P, W , and R are
functions of the angle θ. Coulomb theory searches for the angle θ = θcr that yields
the minimum earth pressure P = Pp. Thus,

dP

dθ
= 0 (7.24)

The solution of (7.24) will yield the angle θcr, and subsequently, the corresponding
minimum earth pressure Pp can be calculated.

The Coulomb passive earth pressure coefficient for the general case shown in
Figure 7.17 is dependent on the angle of the back face of the wall, the soil–wall
friction, and the angle of backfill slope:

Kp = sin2(β − φ′)

sin2 β sin(β + δ)

[
1 −

√
sin(φ′ + δ) sin(φ′ + α)

sin(β + δ) sin(α + β)

]2 (7.25)

7.5 RETAINING WALL DESIGN

The retaining wall designer needs to identify ahead of time the fundamental proper-
ties of the backfill soil and the soil under the base of the retaining wall (foundation
soil). These soil properties include the unit weight and the shear strength param-
eters c′ and φ′. Usually, the height H of the retaining wall is specified and the
designer can proportion the wall (assume approximate dimensions) based on H .
Figure 7.18 shows the approximate dimensions for a cantilever wall. The retaining
wall needs to satisfy three external stability criteria: sliding (Figure 7.19a), over-
turning (Figure 7.19b), and bearing capacity/excessive settlement (Figure 7.19c and
d). If any of these is not satisfied with a safety margin, the retaining wall needs
to be reproportioned. This is an iterative procedure that requires some practice. In
addition to the external stability, the internal stability has to be satisfied as well.
In the case of a reinforced concrete cantilever retaining wall, for example, the
dimensions of the wall and the amount of steel reinforcement should be adequate
to resist structural failure of the base and the stem of the retaining wall.

For cantilever retaining walls, usually Rankine theory is used to calculate the
active earth pressure. The Rankine active force can be calculated using (7.4). The
active force is applied to a vertical plane passing through the heel of the retaining
wall as shown in Figure 7.20a. The force is applied at H ′/3 and assumed to be
parallel to the backfill slope α. Note that H ′ is slightly greater than H and can
be calculated from wall and backfill geometries. Also, the weight Ws of the soil
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H

0.5 to 0.7H

D 0.1H0.1H
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0.3 m 

1
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0.02

FIGURE 7.18 Proportioning a cantilever retaining wall based on its height H . (Adapted
from Das, 2004.)

(a) (b)

(c) (d)

FIGURE 7.19 External stability of retaining walls: (a) sliding; (b) overturning;
(c) bearing capacity; (d) excessive settlement.
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FIGURE 7.20 Application of Rankine and Coulomb lateral earth pressures on a retaining
wall.
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wedged between the vertical plane passing through the heel and the back face of
the retaining wall should be regarded as a stabilizing force when we calculate the
safety factors for both sliding and overturning. As mentioned earlier, the Rankine
theory assumes that the backfill soil has a horizontal surface, and (7.6) can be
used to calculate the active earth pressure coefficient for that condition. But for
a granular backfill with an inclined surface, the following equation can be used
instead:

Ka = cos α
cos α −

√
cos2 α − cos2 φ′

cos α +
√

cos2 α − cos2 φ′ (7.26)

where α is the inclination angle of the backfill and φ′ is the friction angle of the
backfill soil.

For gravity retaining walls, either Rankine or Coulomb active earth pressure
theory can be used. If Rankine theory is used, the Rankine active force is applied
to the retained soil at a vertical plane passing through the heel of the retaining wall
as shown in Figure 7.20b. The force is applied at H ′/3 and assumed to be parallel
to the backfill slope α. The height H ′ can be calculated from wall and backfill
geometries. The weight Ws of the soil wedged between the vertical plane passing
through the heel and the back face of the retaining wall should be regarded as a
stabilizing force against sliding and overturning.

If Coulomb active force is used instead of Rankine’s active force, the Coulomb
force is applied directly to the back face of the gravity retaining wall. The line of
action of the active force makes an angle δ with the normal to the back face of the
retaining wall, and the point of application of the Coulomb active force is located
at H /3, as shown in Figure 7.20c.

7.5.1 Factors of Safety

The design of a retaining wall is an iterative procedure. An initial wall geometry is
assigned to the wall (proportioning the wall) and the resulting forces, such as the
weight of the wall and the active and passive forces, are calculated. These forces
are then checked using appropriate factors of safety and the geometry of the wall
is then revised until satisfactory factors of safety are obtained.

7.5.2 Proportioning Walls

For external stability concerns, retaining walls are proportioned so that the width
of the base, B, is equal to approximately 0.5 to 0.7 times the height of the wall,
H . Other wall dimensions can also be proportioned, as illustrated in Figure 7.18.
For example, a 10-m-high cantilever wall would have a base approximately 5 to
7 m wide, a base thickness of approximately 1 m, and a stem thickness varying
from 1 m at the bottom to 0.3 m at the top.
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7.5.3 Safety Factor for Sliding

A retaining wall has a tendency to move (slide) away from the backfill soil because
of the active earth pressure exerted by the soil, as shown in Figure 7.21. This active
force is called a driving force. The retaining wall resists sliding by the friction and
adhesion mobilized between the base of the wall and the foundation soil. These
forces are called resisting forces. Note that the frictional force is proportional to
the total vertical force, which includes the weight of the retaining wall (Wc) and
the weight of the soil (Ws) that is wedged between the wall and a vertical plane
passing through the heel (if Rankine theory is used, Figure 7.20 a and b). The
passive earth pressure in the fill in front of the wall is a resisting horizontal force
acting opposite to the driving force.

In general, a safety factor is defined as the ratio of the sum of available resisting
(stabilizing) forces to the sum of driving (destabilizing) forces. With respect to
sliding, for which a factor of safety of 1.5 or better is required, the factor of safety
is given by

FSsliding = resisting (stabilizing) forces

driving (destabilizing) forces
=

(∑
V

)
tan(k1φ

′
f ) + Bk2c

′
f + Pp

Pa cos α

(7.27)

where
∑

V is the total vertical force, tan(k1φ
′
f ) the coefficient of friction between

the base of the wall and the foundation soil, k1 and k2 reduction factors ranging

H

W1

W2

W3

W4 W5

Pp

Pa-R
ankine

Foundation Soil: 

Pa sin α

Pa cos α

B

D

Backfill Soil:

α

α

ΣV

H′

H′/3

γb

bφ′

bc′ = 0

γf , φ′ , c′f f

1

2

4

3

5

FIGURE 7.21 Calculations of safety factors for sliding and overturning.
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from 1
2 to 2

3 , φ′
f the friction angle of the foundation soil, c′

f the cohesion intercept
(adhesion) of the foundation soil, Pp the horizontal passive earth pressure force, and
Pa(cos α) the horizontal component of the Rankine active force. For gravity walls,
the Coulomb active force can be used instead. The horizontal component of the
Coulomb active force can be calculated (Figure 7.20c) to replace the denominator
in (7.27).

7.5.4 Safety Factor for Overturning

A retaining wall tends to rotate about the toe, due to the active earth pressure exerted
by the backfill soil. The moment resulting from the active force is opposed by the
moments resulting from the vertical forces produced by the wall, the soil, and the
vertical component of the active force (Figure 7.21). With respect to overturning,
for which a factor of safety of 2 to 3 is required, the factor of safety is defined as
the sum of resisting moments divided by the overturning moment caused by the
horizontal component of the active force as given by

FSoverturning =
∑

MR∑
MO

(7.28)

where
∑

MR is the sum of the resisting moments about the toe of the wall
and

∑
MO is the sum of the overturning moments about the toe of the wall.

Example 7.2 shows how to calculate
∑

MR and
∑

MO for a cantilever retain-
ing wall.

7.5.5 Safety Factor for Bearing Capacity

The bearing capacity of the foundation soil must be adequate to support the base
of the retaining wall. Because of the lateral earth pressure exerted on the stem of
a retaining wall, the resulting load on the base of the wall (foundation) is both
eccentric and inclined. The ultimate bearing capacity of the foundation soil, qu,
can be calculated using Meyerhof’s equation (Chapter 6) because it accounts for
eccentric and inclined loads:

qu = c′
f NcFcsFcdFci + qNqFqsFqdFqi + 1

2γf B ′NγFγsFγdFγi (7.29)

where

Nq = tan2

(
45◦ + φ′

f

2

)
e
π tan φ′

f

Nc = (Nq − 1) cot φ′
f

Nγ = 2(Nq + 1) tan φ′
f
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Also, q = γf D, where D is the height of the fill in front of the wall, γf is the unit
weight of the foundation soil (if it is the same soil as that in front of the wall), φ′

f

is the internal friction angle of the foundation soil, and B ′ = B − 2e, where e is
the eccentricity, defined below.

For a retaining wall the base can be considered as a strip foundation in which
(B ′/L) ≈ 0; therefore, the shape factors are

Fcs = 1 + B ′

L

Nq

Nc

= 1 + 0 = 1

Fqs = 1 + B ′

L
tan φ′

f = 1 + 0 = 1

Fγs = 1 − 0.4
B ′

L
= 1 − 0 = 1

Fcd, Fqd, and Fγd are the depth factors:

Fcd = 1 + 0.4
D

B

Fqd = 1 + 2 tan φ′
f (1 − sin φ′

f )2 D

B

Fγd = 1

where D is the height of the soil in front of the wall.
Finally, Fci, Fqi, and Fγi are the inclination factors:

Fci = Fqi =
(

1 − η
◦

90◦

)2

Fγi =
(

1 − η
◦

φ′ ◦
f

)2

where η is the inclination of the resultant R (Figure 7.22):

η = tan−1
(

Pa cos α∑
V

)
(7.30)

The reaction of the foundation soil against the base of the wall is nonuniform, as
shown in Figure 7.22. This nonuniform pressure is the greatest (qmax) below the
toe of the base and the least (qmin) below the heel:

qmax =
∑

V

B

(
1 + 6e

B

)
(7.31)

qmin =
∑

V

B

(
1 − 6e

B

)
(7.32)
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FIGURE 7.22 Calculations of safety factor for bearing capacity.

where e is the eccentricity:

e = B

2
−

∑
MR − ∑

MO∑
V

(7.33)

The factor of safety with respect to bearing capacity is given by (7.34). A bearing
capacity factor of safety of 3 is required.

FSbearing capacity = qu

qmax
(7.34)

Note from (7.32) that if the eccentricity e is less than (or equal to) B/6, qmin remains
positive (or equal to zero) indicating that the base is in complete contact with the
soil. However, if the eccentricity e is greater than B/6, qmin becomes negative,
indicating that the pressure under the heel is negative and the heel of the base is
separated from the foundation soil. In such a case the retaining wall needs to be
reproportioned.

When all safety factors of a retaining wall are satisfactory, the settlement of the
base of the wall along with the global stability of the entire soil mass on which the
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wall is supported must be evaluated. The estimated settlement must be tolerable.
Also, the global stability, using slope stability calculations, must be adequate. The
theoretical background of slope stability is beyond the scope of this book.

Example 7.2 Calculate the factors of safety with respect to sliding, overturn-
ing, and bearing capacity for the 5-m-high cantilever wall shown in Figure 7.23.
Use the Rankine method of analysis. The foundation soil is a granular soil with
γf = 17 kN/m3 and φ′

f = 37◦. The backfill soil is also a granular soil with γb =
17 kN/m3 and φ′

b = 30◦. The concrete has a unit weight γc = 24 kN/m3. The
groundwater table is well below the foundation.

SOLUTION: Let’s start with proportioning the retaining wall. Based on the wall
height H = 5 m, the base width B = 0.5 × H = 2.5 m is selected. Other wall
dimensions are selected as shown in Figure 7.23. The Rankine force, Pa , acts along
a vertical plane passing through the heel of the wall. The active force is applied at
a distance H ′/3 from the base, and it has a vertical and a horizontal component as
shown in Figure 7.23. Note that H ′ = 5 + 1.5 tan 10◦ = 5 + 0.26 = 5.26 m.

Ka = cos 10◦ cos 10◦ − √
cos2 10◦ − cos2 30◦

cos 10◦ + √
cos2 10◦ − cos2 30◦ = 0.35

Kp = tan2

(
45◦ + φ′

f

2

)
= tan2

(
45◦ + 37◦

2

)
= 4.0

H
= 

5 
m

W1

H′/3 = 1.783 m

H′ = 5.26 m
Pa-R

ankine

α = 10°

α = 10°

γb = 17 kN/m3

φ′b = 30°
c′b = 0

Foundation Soil: 

ΣV

W5

W3

W4

W2

Pa sin α

Pa cos α

Pp

B = 2.5 m

D = 1 m

Backfill Soil:

A

0.20.5 1.5 m0.3

0.5 m

0.3 m

γf = 17 kN/m3, φ′f = 37°, c′f = 0

1

2

5

3

4

FIGURE 7.23 A 5-m-high cantilever wall with a granular backfill.
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Pa = 1
2KaγbH

′ 2 = ( 1
2

)
(0.35)(17)(5.26)2 = 82.3 kN/m

Pp = 1
2Kpγf D2 = ( 1

2

)
(4.0)(17)(1)2 = 34 kN/m

Let’s divide the soil and the wall into triangular and rectangular areas (areas
1 to 5) as shown in Figure 7.23. Next, we can calculate the weight of each area
per unit length, assuming that the wall is 1 m long. This is done by multiplying
each area by its unit weight. The calculations are given in the second column of
Table 7.1. The third column gives the moment arm of each weight vector. The
moment arm is the perpendicular distance between the line of action of the weight
vector (or force) and the toe of the wall (point A in Figure 7.23). The fourth
column gives the resisting moments of the five weight vectors. It also includes
the moment generated by the vertical component of the Rankine active force. The
weights of areas 1 to 5 are added to the vertical component of the Rankine active
force at the bottom of the second column to give us

∑
V . Also, the resisting

moments generated by areas 1 to 5 are added to the moment generated by the
vertical component of the Rankine active force at the bottom of the fourth column
to give us

∑
MR .

Sliding

FSsliding =
(∑

V
)

tan(k1φ
′
f ) + Bk2c

′
f + Pp

Pa cos α
= 205.6 tan

( 2
3 × 37◦) + 0 + 34

82.3 cos 10◦

= 1.58 > 1.5 okay!

Overturning From Figure 7.23 the overturning moment can be calculated as

∑
MO = Pa cos α

H ′

3
= 82.3 cos 10◦

(
5.26

3

)
= 142.1 kN/m

FSoverturning =
∑

MR∑
MO

= 315

142.1
= 2.2 > 2 okay!

TABLE 7.1

Area in Resisting Moment,
Figure 7.23 W = γ · area (kN/m) Moment Arm (m) MR(kN · m/m)

1
( 1

2

)
(1.5)(0.26)(17) = 3.32 1 + ( 2

3

)
(1.5) = 2 6.64

2 (1.5)(4.5)(17) = 114.75 1 + ( 1
2

)
(1.5) = 1.75 200.8

3 (0.3)(4.5)(24) = 32.4 0.5 + 0.2 + ( 1
2

)
(0.3) = 0.85 27.5

4
( 1

2

)
(0.2)(4.5)(24) = 10.8 0.5 + ( 2

3

)
(0.2) = 0.633 6.8

5 (2.5)(0.5)(24) = 30
( 1

2

)
(2.5) = 1.25 37.5

Active force Pa sin 10◦ = 14.3 2.5 35.8∑
V = 205.6

∑
MR = 315
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Bearing Capacity First let’s calculate the bearing capacity factors:

Nq = tan2

(
45◦ + φ′

f

2

)
e
π tan φ′

f = tan2
(

45◦ + 37◦

2

)
eπ tan 37◦ = 42.9

Nc = (Nq − 1) cot φ′
f = (42.9 − 1) cot 37◦ = 55.6

Nγ = 2(Nq + 1) tan φ′
f = (2)(42.9 + 1) tan 37◦ = 66.2

Note that all the shape factors are equal to 1 for a strip foundation. Now we can
calculate the depth factors:

Fcd = 1 + 0.4
D

B
= 1 + 0.4

(
1

2.5

)
= 1.16

Fqd = 1 + 2 tan φ′
f (1 − sin φ′

f )2 D

B
= 1 + 2 tan 37◦

(1 − sin 37◦
)2

(
1

2.5

)
= 1.096

Fγd = 1

The load inclination can be calculated as

η = tan−1 Pa cos α∑
V

= tan−1 81.05

205.6
= 21.5◦

Therefore, the inclination factors are

Fci = Fqi =
(

1 − η
◦

90◦

)2

=
(

1 − 21.5◦

90◦

)2

= 0.579

Fγi =
(

1 − η
◦

φ′ ◦
f

)2

=
(

1 − 21.5◦

37◦

)2

= 0.175

Now calculate the eccentricity:

e = B

2
−

∑
MR − ∑

MO∑
V

= 2.5

2
− 315 − 142.1

205.6
= 0.409 <

B

6
= 2.5

6

= 0.417 okay!

The maximum pressure under the toe:

qmax =
∑

V

B

(
1 + 6e

B

)
= 205.6

2.5

(
1 + 6 × 0.409

2.5

)
= 163 kPa

The minimum pressure under the heel:

qmin =
∑

V

B

(
1 − 6e

B

)
= 205.6

2.5

(
1 − 6 × 0.409

2.5

)
= 1.5 kPa > 0 okay!

The effective foundation width:

B ′ = B − 2e = 2.5 − (2)(0.409) = 1.682 m
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The overburden pressure:

q = γf D = (17)(1) = 17 kPa

Finally, we can calculate the ultimate bearing capacity:

qu = c′
f NcFcsFcdFci + qNqFqsFqdFqi + 1

2γf B ′NγFγsFγdFγi

qu = 0 + (17)(42.9)(1)(1.096)(0.579) + ( 1
2

)
(17)(1.682)(66.2)(1)(1)(0.175)

= 629 kPa

Therefore, the safety factor for bearing capacity is

FSbearing capacity = qu

qmax
= 629

163
= 3.86 > 3 okay!

Note that all the three safety factors are satisfactory. This means that the wall
design is also satisfactory.

Example 7.3 Lateral Earth Pressure Calculations Using FEM Figure 7.24
shows 3-m-high backfill sand supported by a concrete retaining wall. A 7 kPa
surcharge pressure is applied at the surface of the backfill. (a) Calculate the at-rest
earth pressure distribution on the 3-m-high retaining wall assuming that the wall
is stationary. (b) Assuming that the wall moves away from the backfill by rotat-
ing about the heel (point A), calculate the active earth pressure and compare with
Rankine’s active earth pressure theory. (c) If the wall is forced toward the backfill
by rotating about the heel (point A), calculate the passive earth pressure against the
wall and compare with Rankine’s passive earth pressure theory. Assume that the
backfill soil is sand with φ′ = 37◦ and c′ = 0 MPa. The water table is well below
the retaining wall base.

3 m 9 m

3 m

7 kPa

A

B

Sand

δ = 3 mm

γb = 17 kN/m3

φ′b = 37°
c′b = 0

FIGURE 7.24 A 3-m-high backfill sand supported by a concrete retaining wall.
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SOLUTION (filename: Chapter7 Example3.cae): This example presents a limit
equilibrium solution for a layer of sand supported by a concrete retaining wall. The
cap model (modified Drucker–Prager model with a cap, Chapter 2), with parame-
ters matched to the classical Mohr–Coulomb yield model parameters c′ and φ′, is
used to simulate the behavior of the backfill sand.

The two-dimensional plane strain model analyzed is shown in Figure 7.24. The
sand layer is 3 m high. A 3-m-high retaining wall provides lateral support to the
soil. Initially, the wall was restricted from lateral movements by fixing point B
in Figure 7.24. The self-weight of the backfill soil was then applied using the
“gravity” option. This condition simulates the at-rest condition in which the wall
does not move laterally. After that the wall was forced to rotate away from the
backfill to induce active earth pressure conditions. This was done by forcing point
B (Figure 7.24) to displace away from the backfill using the loading history shown
in Figure 7.25a. Also, the history of the gravity load is shown in Figure 7.25b. A
separate analysis was carried out to simulate the passive earth pressure condition.
In which case the wall was pushed inward by forcing point B to displace toward
the backfill using the loading history shown in Figure 7.25c. Note that the wall is
allowed to rotate about the z-axis passing through the heel at point A.

Figure 7.26 shows the finite element mesh along with the assumed boundary
conditions. Reduced-integration, four-node linear plane strain quadrilateral ele-
ments are used for the sand layer and for the retaining wall. The base of the
sand layer is fixed in all directions. The right-hand-side boundary of the sand layer
is fixed in the horizontal direction but free in the vertical direction. Penalty-type
interface elements are used between the wall and the backfill. The interface fric-
tion is assumed to be zero; thus, the interface elements provide frictionless contact
between the wall and the backfill soil, and at the same time, they prevent the wall
from penetrating the soil. It is noted that the mesh is finer in the vicinity of the
retaining wall since that zone is the zone of stress concentration. No mesh conver-
gence studies have been performed. However, the dimensions of the sand layer are
chosen in a way that boundary effects are minimized.

The concrete retaining wall is assumed to be linear elastic with a Young’s
modulus of 21.3 GPa and a Poisson ratio of 0.2. The elastic response of the sand
is assumed to be linear and isotropic, with a Young’s modulus of 182 MPa and a
Poisson ratio of 0.3. For plane strain conditions, the Mohr–Coulomb parameters
(φ′ = 37◦ and c′ = 0 MPa) can be converted to Drucker–Prager parameters as
follows:

tan β = 3
√

3 tan φ′√
9 + 12 tan2 φ′ for φ′ = 37◦ → β = 44.56◦

d = 3
√

3c′√
9 + 12 tan2 φ′ for c′ = 0 → d = 0

The cap eccentricity parameter is chosen as R = 0.2. The initial cap position (which
measures the initial consolidation of the specimen) is taken as ε

pl
vol(0) = 0.0, and
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the cap hardening curve is assumed to be the same as the one shown in Figure 6.9.
The transition surface parameter α = 0.1 is used. The cap model parameters are
summarized in Table 7.2.

In the first analysis we calculate the lateral earth pressure exerted on the retaining
wall for two conditions: at-rest and active. The second analysis is identical to the
first analysis except for the direction of wall motion, which was simply reversed to
induce passive earth pressure conditions. Both analyses were performed using the
dynamic–explicit option with a “smooth-step” loading criterion. Dynamic–explicit
analysis has to be carried out carefully. The loads must be applied very slowly
to avoid exciting the model. For that reason, explicit analyses use very small
time increments automatically to ensure stability, making them computationally
expensive. But such analysis is desirable when failure and postfailure conditions
are sought. Note that static analysis can be used for this problem (not done here).

The active earth pressure analysis consists of two steps. In step 1, point B is
restricted from any lateral movements, and the gravity and surcharge loads are
applied to the sand layer. The gravity load is particularly important because it
will determine the initial stresses in all soil elements. The soil behavior is stress
dependent, and the cap model used herein considers this important fact (Chapter 2).
The surcharge load is applied using the instantaneous load option. The gravity load
is applied using a smooth-step function that lasted 2.5 seconds, as indicated in
Figure 7.25b. This was followed by another 2.5-second “resting” time period, as
shown in the figure, to make sure that the model was not excited by the applied
loads. The finite element results show that the model was indeed unexcited during
and after gravity load application, as indicated in Figure 7.27 (oscillations are not
detected). This figure shows the horizontal stress history of several soil elements
adjacent to the wall. The calculated horizontal stresses in these elements at the end
of the resting time period (5 seconds) represent the at-rest lateral earth pressure
distribution against the wall since the wall was restricted from lateral motion. These
stresses are shown in Figure 7.28, where they are compared with the theoretical
at-rest lateral earth pressure distribution. Good agreement is noted between the
theoretical and the finite element calculations.

In step 2 the wall is forced to rotate away from the backfill within 5 seconds, as
indicated by the loading history of point B shown in Figure 7.25a. Consequently,
the horizontal stresses in the elements adjacent to the wall decreased gradually, as

TABLE 7.2 Cap Model Parameters

General Plasticity

ρ (kg/m3) 1923 d (kPa) 10−4

e0 1.5 β (deg) 44.56
Elasticity R 0.2

E (MPa) 182 Initial yield 0.0
ν 0.3 α 0.1

K 1
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FIGURE 7.28 At-rest lateral earth pressure: comparison between theory and FEM.
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shown in Figure 7.27, approaching their “limiting” values: the active earth pres-
sure values. The active earth pressure distribution is compared with the Rankine
active earth pressure distribution as shown in Figure 7.29. Again, the theoretical
active earth pressure agrees well with the finite element results. It is to be noted
that the limiting active earth pressure condition occurred after the formation of a
failing soil wedge adjacent to the retaining wall. The plastic strain contours, shown
in Figure 7.30, clearly illustrate the presence of a failure plane similar to the one
assumed in the Coulomb active earth pressure theory. Figure 7.31 shows the dis-
placement vectors of the retaining wall and the backfill soil at the end of step 2.
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FIGURE 7.29 Active lateral earth pressure: comparison between theory and FEM.

FIGURE 7.30 Distribution of plastic strains in the backfill at active failure.
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FIGURE 7.31 Displacement vectors in the backfill at active failure.

Again, the figure clearly shows a soil wedge that has displaced away from the
backfill soil that remained essentially unaffected.

The analysis of passive earth pressure also consisted of two steps. This analysis
is identical to the active earth pressure analysis, described above, except for the
direction of the forced displacement of point B that was reversed to induce passive
earth pressure. In step 2 of this analysis the wall is forced to rotate toward the
backfill within 5 seconds, as indicated by the loading history of point B shown in
Figure 7.25c. As a result, the horizontal stresses in the elements adjacent to the wall
increased gradually, as shown in Figure 7.32, approaching their “limiting” values:
the passive earth pressure values. The passive earth pressure distribution is com-
pared with the Rankine passive earth pressure distribution as shown in Figure 7.33.
The figure indicates that the theoretical passive earth pressure is greater than the
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FIGURE 7.32 Calculated lateral earth pressure (at-rest and passive).
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FIGURE 7.33 Passive lateral earth pressure: comparison between theory and FEM.

pressure calculated, especially near the bottom of the retaining wall. If the finite ele-
ment results are considered “reasonable” in this analysis, the Rankine passive earth
pressure is unsafe because it overestimates the passive resistance of the backfill soil.

7.6 GEOSYNTHETIC-REINFORCED SOIL RETAINING WALLS

Just like conventional retaining walls, geosynthetic-reinforced soil (GRS) walls
are used when a sudden change of elevation is desired, as shown in Figure 7.34.
A GRS wall consists of three components: soil (the main ingredient), geosyn-
thetic reinforcement, and facing, as shown in the figure. Geosynthetics are made
of polymers such as polyester, polyethylene, and polypropylene (all petroleum
by-products). Two types of geosynthetics are widely used for soil reinforcement:
(1) geotextiles, fabriclike sheets made of woven or nonwoven polymeric filaments,
and (2) geogrids, netlike sheets made of polymers (using a tensile drawing manu-
facturing process).

The part of the backfill that contains the reinforcement is called the reinforced
soil, and the part of the backfill behind that is called the retained soil. The entire
reinforced zone that contains backfill soil, reinforcement, and the facing units act
as a monolith whose main role is to resist the destabilizing active earth pressure
exerted by the retained soil as shown in Figure 7.34. The self-weight of the rein-
forced zone is the predominant load in a GRS wall. Geosynthetics are high-strength
polymer sheets that are typically used for soil reinforcement. They are resistant to
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FIGURE 7.34 Geosynthetic-reinforced soil retaining walls.

corrosion but vulnerable to ultraviolet rays—they need to be protected from sun-
light. This is done by covering the exposed geosynthetic reinforcements at the front
of the GRS wall using concrete facing units as in segmental walls, for example.

In this section we describe design concepts of GRS walls, concepts similar to
those of reinforced earth retaining walls that use steel strips as reinforcement instead
of geosynthetics. The design of GRS walls involves satisfying external stability and
internal stability. External stability refers to the stability of the reinforced soil mass
as a whole in relation to the soil adjacent to it. Internal stability, on the other hand,
refers to stability within the reinforced soil mass.

7.6.1 Internal Stability of GRS Walls

The internal stability of GRS walls requires that the wall be sufficiently sta-
ble against failure within the reinforced soil mass (i.e., the reinforcement is not
overstressed and its length is adequately embedded). Internal failure modes include
tensile rupture failure of reinforcement and pullout failure of reinforcement.

Destabilizing horizontal forces resulting from an assumed lateral earth pressure
behind the reinforced soil are resisted by stabilizing horizontal forces provided by
the reinforcement as indicated in Figure 7.35. Limiting equilibrium analysis is used
to equate the horizontal forces with safety factors to assure adequate safety margins.
Two independent safety factors are determined for each layer of reinforcement.
The factor of safety for reinforcement rupture, FSR , is the ratio of reinforcement
strength to the lateral earth pressure thrust for the layer. The factor of safety for
pullout, FSP , is the ratio of pullout resistance to the lateral earth pressure thrust
for the layer. The lateral earth pressure thrust for a reinforcement layer can be
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FIGURE 7.35 Internal stability of geosynthetic-reinforced soil retaining walls.

calculated as the product of the lateral earth pressure at the level of the layer and
the “contributory” area S × 1 m (Figure 7.35b). Note that S is equal to the spacing
between two reinforcement layers.

A planar failure surface through the reinforced soil is assumed as shown in
Figure 7.35a (Rankine active failure condition). For a wall with horizontal crest
and subject to a uniform vertical surcharge, the failure surface slopes upward at
an angle of 45◦ + φ′

b/2 from the horizontal (φ′
b is the angle of internal friction of

the backfill). The reinforcements extend beyond the assumed failure surface and
are considered to be tension-resistant tiebacks for the assumed failure wedge. As
a result, this analysis is commonly referred to as tieback wedge analysis.

Let’s discuss the equilibrium of a reinforcement layer located at a distance z

measured from the top surface of the backfill (Figure 7.35b). Assuming a freely
draining backfill soil, the active earth pressure at a depth z can be calculated as

σ′
a = Kaσ

′
v = Kaγbz (7.35)
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in which

Ka = tan2
(

45◦ − φ′
b

2

)
(7.36)

where γb and φ′
b are the unit weight and the friction angle of the backfill soil,

respectively. Consider a geosynthetic reinforcement layer with a rupture strength
TR (kN/m). The factor of safety for reinforcement rupture, FSR , is the ratio of rein-
forcement strength to the lateral earth pressure thrust for the layer (Figure 7.35b):

FSR = TR

σ′
aS

= TR

KaγbzS
(7.37)

where S is the spacing between two geosynthetic layers (Figure 7.35b). The factor
of safety for reinforcement rupture, FSR , is usually assumed to be 1.3 to 1.5 to
account for various uncertainties. From (7.37) we can calculate the required spacing
between two reinforcement layers:

S = TR

Kaγbz · FSR

(7.38)

Now, let’s determine the required length (L) of the reinforcement layer located at
a depth z. Note that L = Lr + Le, as indicated in Figure 7.35a, where Lr is the
length within the Rankine’s failure wedge and Le is the extended length beyond
Rankine’s failure wedge. From Figure 7.35a one can write

tan

(
45◦ + φ′

b

2

)
= H − z

Lr

(7.39)

Therefore,

Lr = H − z

tan(45◦ + φ′
b/2)

(7.40)

In reference to Figure 7.35c, the length Le can be calculated using the definition
of the safety factor for pullout, FSP , which is the ratio of pullout resistance to the
lateral earth pressure thrust for the layer. Note from Figure 7.35c that the pullout
resistance of the part of the reinforcement outside the Rankine’s failure wedge
is equal to 2Aγbz tan(φ′

int) = 2(Le × 1)γbz tan(φ′
int), where φ′

int is the “interface”
friction angle between the backfill soil and the reinforcement. We can assume that
φ′

int = 2
3φ′

b if no laboratory measurement of φ′
int is available. It follows that

FSP = 2Leγbz tan φ′
int

KaγbzS
= 2Le tan φ′

int

KaS
(7.41)

Therefore,

Le = SKa · FSP

2 tan φ′
int

(7.42)
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Finally,

L = H − z

tan(45◦ + φ′
b/2)

+ SKa · FSP

2 tan φ′
int

(7.43)

A safety factor for pullout of 1.3 to 1.5 can be assumed in (7.43).
The design procedure for a GRS wall of a height H starts with the selection

of a commercially available geosynthetic reinforcement with a rupture strength
TR . Then the required spacing at various depths can be calculated using (7.38).
The spacing calculated can be adjusted to fit the wall’s particular geometry. For
example, if we are designing a segmental wall with 0.3-m-high facing blocks, the
adjusted spacing could be 0.3 m or one of its multiples as long as it is smaller
than, or equal to, the spacing calculated.

The next step is to calculate the required length of each layer of reinforcement
using (7.43). Note that the length L of any layer should not be less than 50% of the
wall height (H ). Also, note that it is desirable to use many layers of a lower-strength
geosynthetic reinforcement (i.e., small spacing) than using fewer layers of a higher-
strength reinforcement (i.e., large spacing). The reason of this recommendation is
intuitive: If we have more reinforcement layers within the soil mass, there will
be more interaction between the soil and the reinforcement, which means that the
reinforcement is actually working. For the same reason, an experienced concrete
designer would use a large number of small-diameter steel bars to reinforce a
concrete beam as opposed to using fewer steel bars with a larger diameter, as long
as the two provide the same total cross-sectional area of reinforcement.

7.6.2 External Stability of GRS Walls

The external stability of a GRS wall is generally evaluated by considering the
reinforced soil mass as a rigid gravity retaining wall with earth pressure acting
behind the wall (Figure 7.36). Using methods similar to those for conventional
stability analysis of rigid earth retaining structures, the wall is checked for stability
against three potential failure modes: sliding failure, overturning failure, and foun-
dation bearing failure. Slope failure is also a potential failure mode that needs to
be addressed.

For the simple GRS wall shown in Figure 7.36, the safety factor for sliding is
defined as

FSsliding = resisting (stabilizing) forces

driving (destabilizing) forces
= W tan(k1φ

′
f ) + Lk2c

′
f

Pa

(7.44)

where k1 and k2 are reduction factors ranging from 1
2 to 2

3 . The safety factor for
overturning is

FSoverturning =
∑

MR∑
MO

= W(L/2)

Pa(H/3)
(7.45)
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FIGURE 7.36 Lateral earth pressure against the reinforced soil zone.

The safety factor for bearing capacity is

FSbearing capacity = qu

q
= qu

γbH
(7.46)

in which

qu = c′
f Nc + 1

2γf L′Nγ (7.47)

where

L′ = L − 2e (7.48)

and

e = L

2
−

∑
MR − ∑

MO∑
V

= L

2
− W(L/2) − Pa(H/3)

W
(7.49)

It is recommended that the safety factors for sliding, overturning, and bearing
capacity be equal to or greater than 3.

Example 7.4 Design a 3-m-high geotextile-reinforced retaining wall (only for
internal stability). The reinforcement has a rupture strength of 14 kN/m. The back-
fill is a sandy soil with γb = 18.86 kN/m3, c′

b = 0, and φ′
b = 37◦. Use FSR =

FSP = 1.5.

SOLUTION: The design procedure described above is used herein. Table 7.3 is
established (using a spreadsheet) to calculate at various depths the required spacing
(S) using (7.38) and the required geosynthetic length (L) using (7.43).

In the first column the depth, z, varies from 0 (top) to 3.0 m (bottom) in 0.3-m
increments. In the second column the required spacing is calculated using (7.38).
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TABLE 7.3 Design of a Geotextile Reinforced Retaining Wall

S (m) S Selected L (m) L Selected Force
z (m) [Eq. (7.38)] (m) [Eq. (7.43)] (m) (kN/m)

0.3 6.643722 0.3 1.469713 2.13 0.421451
0.6 3.321861 0.3 1.319928 2.13 0.842901
0.9 2.214574 0.3 1.170143 2.13 1.264352
1.2 1.66093 0.3 1.020358 2.13 1.685802
1.5 1.328744 0.3 0.870573 2.13 2.107253
1.8 1.107287 0.3 0.720788 2.13 2.528703
2.1 0.949103 0.3 0.571003 2.13 2.950154
2.4 0.830465 0.3 0.421218 2.13 3.371604
2.7 0.738191 0.3 0.271433 2.13 3.793055

3 0.664372 0.3 0.121648 2.13 4.214505

In the third column the calculated spacing is changed to fit our specific application,
in which we are using 0.3-m-thick soil lifts to facilitate compaction. We selected
a uniform spacing of 0.3 m. Note that the selected spacing is less than the spac-
ing required at the bottom of the wall. The fourth column includes the required
geosynthetic layer length calculated using (7.43). We choose a uniform length of
2.13 m, which is greater than the required length at the top of the wall. The final
design of the geotextile wall is shown in Figure 7.37.

3 m

Layer 1

Layer 2

Layer 10

Sand: c′b = 0, φ′b = 37°, γb =18.9 kN/m3

2.13 m

0.3 m

Geotextile: TR = 14 kN/m

FIGURE 7.37 Design of a 3-m-high geotextile-reinforced retaining wall.
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Example 7.5 Sequential Construction of a Geotextile-Reinforced Soil Retaining
Wall using FEM Using the sequential construction procedure (layer by layer),
analyze the 3-m-high geotextile-reinforced soil retaining wall shown in Figure 7.37
(same as Example 7.4). The geotextile reinforcement is 3 mm thick and has a
rupture strength of 14 kN/m and an elastic modulus of 20,000 kPa. The backfill is
a sandy soil with γb = 18.86 kN/m3, c′

b = 0, and φ′
b = 37◦. The wall is founded

on a rigid foundation soil. The wall is constructed in 10 equal layers each 0.3 m
thick. Each layer is constructed in a 10-second period, during which the self-weight
of the soil layer is applied. The total construction time is 100 seconds. Note that
this problem is time independent, and time is used only to facilitate application of
the sequential construction procedure. Assume that the backfill soil is elastoplastic
obeying the cap model (Chapter 2). The cap model parameters for the backfill soil
are given in Table 7.4 and Figure 6.9.

SOLUTION (filename: Chapter7 Example5.cae): A finite element mesh, shown in
Figure 7.38, is constructed to simulate the sequential construction procedure of the
geotextile wall. The mesh consists of three major components: (1) one part that
includes 10 soil layers using solid elements, (2) 10 reinforcement layers using 3-
mm-thick truss elements, and (3) 10 skin facing layers using 3-mm-thick beam
elements. In the first calculation step, the entire wall is removed from the finite
element mesh except for the bottom soil layer, the first reinforcement layer, and the
first skin layer. Then the layers are added, one by one, in subsequent calculation
steps. The self-weight of each layer is applied using the gravity option. When a
new layer is added, it is situated on the deformed layer that was added previously.
The new layer is assumed to be “strain-free” at the time of construction.

The soil is assumed to be elastoplastic, obeying the cap model (modified
Drucker–Prager model with a cap, Chapter 2). Using such a model is essential
for this class of analysis because we are concerned with the ability of the wall to
withstand the stresses, due mainly to self-weight, during sequential construction.
A model like this one can detect failure within the wall during construction. The
elastic response of the sand is assumed to be linear and isotropic, with a Young
modulus of 480 kPa and a Poisson ratio of 0.3.

The cap model parameters were matched to the classical Mohr–Coulomb yield
model parameters c′ and φ′. For plane strain conditions, the Mohr–Coulomb

TABLE 7.4 Cap Model Parameters

General Plasticity

ρ (kg/m3) 1923 d (kPa) 0
e0 1.5 β (deg) 44.56

Elasticity R 0.55
E (kPa) 480 Initial yield 0.0
ν 0.3 α 0.01

K 1
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FIGURE 7.38 Finite element discretization of a geotextile-reinforced retaining wall.

parameters (φ′ = 37◦ and c′ = 0 MPa) can be converted to Drucker–Prager param-
eters as follows:

tan β = 3
√

3 tan φ′√
9 + 12 tan2 φ′ for φ′ = 37◦ → β = 44.56◦

d = 3
√

3c′√
9 + 12 tan2 φ′ for c′ = 0 → d = 0

The cap eccentricity parameter is chosen as R = 0.55. The initial cap position
(which measures the initial consolidation of the specimen) is taken as ε

pl
vol(0) =

0.0, and the cap hardening curve is assumed to be the same as the one shown
in Figure 6.9. The transition surface parameter α = 0.01 is used. The cap model
parameters are summarized in Table 7.4.

Figure 7.39 shows the contours of lateral displacements of the wall at the end of
construction. Note that the maximum lateral displacement of approximately 80 mm
is located below the middle of the wall. The figure indicates that the reinforced
soil zone has experienced substantial lateral deformation during construction. The
retained soil, however, remained essentially stationary.

Figure 7.40 shows the calculated lateral earth pressure distribution against the
facing skin. This pressure is taken at a 0.3-m distance behind the facing to avoid
the peculiar stress condition in the soil within the curved skin. Figure 7.40 also
shows the distribution of the lateral earth pressure as calculated using Rankine’s
theory. The two pressure distributions are in good agreement except for the area
near the bottom of the wall. At this location the lateral earth pressure from the
finite element analysis is greater than that calculated using Rankine’s analysis.
This is mainly because of the “fixed” boundary conditions at the bottom of the
wall that was assumed in the finite element analysis. Figure 7.41 presents the
distribution of the maximum reinforcement force as calculated using FEM. The
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FIGURE 7.39 Displacement contours at end of construction of a geotextile-reinforced soil
retaining wall.
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FIGURE 7.40 Lateral earth pressure against wall facing: theory versus FEM.

FEM reinforcement forces seem to vary with depth in a nonlinear manner as indi-
cated in the figure. The calculated forces, using Rankine’s theory (Table 7.3), are
also included in the figure. Reasonable agreement between the finite element and
theoretical results is noted in the figure.
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FIGURE 7.41 Reinforcement maximum axial force: theory versus FEM.

PROBLEMS

7.1 A 5-m-high retaining wall, shown in Figure 7.42, has a sandy backfill with
c′ = 0, φ′ = 35◦, γ = 18 kN/m3, and γsat = 19.5 kN/m3. Calculate the mag-
nitude and location of the at-rest lateral force exerted on a 1-m-long section
of the retaining wall for three conditions: (a) the water table is 2.5 m below
the backfill surface, (b) the water table is coincident with the backfill sur-
face, and (c) the water table is at the bottom of the retaining wall. Assume
that the sand below the water table is fully saturated. The wall is assumed
to be frictionless.

7.2 Using the Rankine method of analysis, calculate the magnitude and location
of the active lateral force exerted on the 5-m-high retaining wall for the three
conditions described in Problem 7.1. The wall is assumed to be frictionless.

7.3 Using the Rankine method of analysis, calculate the magnitude and loca-
tion of the passive lateral force exerted on the 5-m-high retaining wall for
the three conditions described in Problem 7.1. The wall is assumed to be
frictionless.

7.4 For the 5-m-high retaining wall shown in Figure 7.42, the friction angle
between the wall and the backfill is δ = 2φ′/3, where φ′ is the effective
friction angle of the backfill soil. Calculate the magnitude and location of



282 LATERAL EARTH PRESSURE AND RETAINING WALLS

Water Table

γ = 18 kN/m3

H1 = 5 m

φ′ = 35°

c′ = 0

γsat = 19.5 kN/m3

φ′ = 35°

c′ = 0

FIGURE 7.42

the active lateral force exerted on a 1-m-long section of the retaining wall
for three conditions: (a) the water table is 2.5 m below the backfill surface,
(b) the water table is coincident with the backfill surface, and (c) the water
table is at the bottom of the retaining wall. Assume that the sand below the
water table is fully saturated. Use the Coulomb method of analysis.

7.5 Using the Coulomb method of analysis, calculate the magnitude and location
of the passive lateral force exerted on the 5-m-high retaining wall for the
three conditions described in Problem 7.4.

7.6 Calculate the factors of safety with respect to sliding, overturning, and bear-
ing capacity for the 7-m-high retaining wall shown in Figure 7.43. The
foundation soil is a granular soil with γf = 17.5 kN/m3 and φ′

f = 32◦.
The backfill soil is also a granular soil with γb = 17 kN/m3 and φ′

b = 37◦.
The concrete has a unit weight γc = 24 kN/m3. The friction angle between
the wall and the backfill is δ1 = 2φ′

b/3, and the friction angle between the
wall and the foundation soil is δ2 = 2φ′

f /3. The groundwater table is well
below the foundation.

7.7 Figure 7.43 shows 7-m-high backfill sand supported by a concrete retaining
wall. Using the finite element method, calculate the active earth pressure
exerted on the retaining wall. The backfill sand obeys the elastoplastic cap
model. The cap model parameters β and d can be calculated using strength
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FIGURE 7.43

parameters φ′ and c′ for each of the backfill soil and the foundation soil.
The cap eccentricity parameter is R = 0.2, the initial cap position (which
measures the initial consolidation of the specimen) is ε

pl
vol(0) = 0.001, the

cap hardening curve is a straight line passing through two points (p′ =
1 kPa, ε

pl
vol = 0.0) and (p′ = 500 kPa, ε

pl
vol = 0.01), and the transition surface

parameter is α = 0.1. The foundation soil has R = 0.2, ε
pl
vol(0) = 0.0, the cap

hardening curve is a straight line passing through two points [(p′ = 1 kPa,
ε

pl
vol = 0.0) and (p′ = 500 kPa, ε

pl
vol = 0.025)], and α = 0.1.

7.8 Design a 3-m-high geosynthetic-reinforcement soil (GRS) retaining wall
with segmental facing (Figure 7.44). The rupture strength of the reinforce-
ment is 14 kN/m. The concrete block is 20 cm high, 20 cm wide (heel to
toe), and 60 cm long. The backfill is a sandy soil with γb = 18 kN/m3,
c′
b = 0, and φ′

b = 37◦. Use FSR = FSP = 1.5.

7.9 Using the sequential construction procedure (layer by layer), analyze the 3-
m-high GRS retaining wall with segmental facing shown in Figure 7.44. The
geotextile reinforcement is 3 mm thick, has a rupture strength of 14 kN/m,
and has an elastic modulus of 20,000 kPa. The backfill is a sandy soil with
γb = 18 kN/m3, c′

b = 0, and φ′
b = 37◦. The wall is founded on a rigid foun-

dation soil. The wall is constructed in 15 equal layers 0.2 m thick each. Each
layer can be constructed in a 10-second period, during which the self-weight
of the soil layer is applied. Note that this problem is time independent, and
time is used only to facilitate the application of the sequential construc-
tion procedure. Assume that the backfill soil is elastoplastic, obeying the
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FIGURE 7.44

cap model, with the following parameters: the cap eccentricity parameter
R = 0.2, the initial cap position (which measures the initial consolidation
of the specimen) is ε

pl
vol(0) = 0.001, the cap hardening curve is a straight line

passing through two points [(p′ = 1 kPa, ε
pl
vol = 0.0) and (p′ = 500 kPa,

ε
pl
vol = 0.01)], and the transition surface parameter is α = 0.1.

7.10 Using the sequential construction procedure (layer by layer), analyze the 3-
m-high GRS retaining wall with segmental facing shown in Figure 7.45. The
3-m-high GRS segmental wall (described in Problem 7.9) is constructed on
a thick clay layer. The groundwater table is coincident with the top surface
of the clay layer. The wall is constructed in 15 equal layers each 0.2 m thick.

Geosynthetic
Reinforcement

Leveling Pad

3 m

40 cm 20 cm

20 cm

Foundation Soil: Clay
GWT

γb = 17 kN/m3

φ′b = 37°
c′b = 0

FIGURE 7.45
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Each layer can be constructed in a one-day period, during which the self-
weight of the soil layer is applied. Note that this is a consolidation problem
(time dependent) because of the presence of the clay layer.

Assume that the backfill soil is elastoplastic, obeying the cap model, with
the following parameters: the cap eccentricity parameter R = 0.2, the initial
cap position (which measures the initial consolidation of the specimen) is
ε

pl
vol(0) = 0.001, the cap hardening curve is a straight line passing through

two points [(p′ = 1 kPa, ε
pl
vol = 0.0) and (p′ = 500 kPa, ε

pl
vol = 0.01)], and

the transition surface parameter is α = 0.1. Also, assume that the clay layer
obeys the Cam clay model with M = 1.5, λ = 0.12, κ = 0.02, e0 = 1.42,
k = 10−6 m/s, and OCR = 1.2.



CHAPTER 8

PILES AND PILE GROUPS

8.1 INTRODUCTION

Piles are long, slender structural members that transmit superstructure loads to
greater depths within the underlying soil. Piles are generally used when soil con-
ditions are not suited for the use of shallow foundations. Piles resist applied loads
through side friction (skin friction) and end bearing as indicated in Figure 8.1.
Friction piles resist a significant portion of their loads by the interface friction
developed between their surface and the surrounding soils. On the other hand,
end-bearing piles rely on the bearing capacity of the soil underlying their bases.
Usually, end-bearing piles are used to transfer most of their loads to a stronger
stratum that exists at a reasonable depth.

Piles can be either driven or cast in place (bored piles). Pile driving is achieved
by (1) impact dynamic forces from hydraulic and diesel hammers, (2) vibration,
or (3) jacking. Concrete and steel piles are most common. Timber piles are less
common. Driven piles with solid sections (e.g., concrete piles with square cross
section) tend to displace a large amount of soil due to the driving process. These are
full-displacement piles. Hollow piles such as open-ended pipe piles tend to displace
a minimal amount of soil during the driving process. These are called partial-
displacement piles. Cast-in-place (or bored) piles do not cause any soil displacement
since no pile driving is involved; therefore, they are nondisplacement piles.

8.2 DRAINED AND UNDRAINED LOADING CONDITIONS

When saturated coarse-grained soils (sand and gravel) are loaded slowly, volume
changes occur, resulting in excess pore pressures that dissipate rapidly due to high
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Qf (Shaft Friction)

Qu (Ultimate Load)

Qb (End Bearing) 

Pile

FIGURE 8.1 Pile’s side friction (skin friction) and end bearing.

permeability. This is called drained loading. On the other hand, when fine-grained
soils (silts and clays) are loaded, they generate excess pore pressures that remain
entrapped inside the pores because these soils have very low permeabilities. This
is called undrained loading.

Both drained and undrained conditions can be investigated in a laboratory tri-
axial test setup (Chapter 5). Consider a soil specimen in a consolidated–drained
(CD) triaxial test, as shown in Figure 8.2. During the first stage of the triaxial test,
the specimen is subjected to a constant confining stress, σ3, and allowed to con-
solidate by opening the drainage valve. In the second stage of the CD triaxial test,
the specimen is subjected, via the loading ram, to a monotonically increasing devi-
atoric stress, σ1 − σ3, while the valve is kept open. The deviatoric stress is applied
very slowly to ensure that no excess pore water pressure is generated during this
stage—hence the term drained. Typical CD test results at failure can be presented
using Mohr’s circle as shown in Figure 8.3. The drained (or long-term) strength
parameters of a soil, c′ and φ′, can be obtained from the Mohr–Coulomb failure
criterion as indicated in the figure. Note that c′ = 0 for sands and normally consoli-
dated clays. These parameters must be used in drained (long-term) analysis of piles.

Now let’s consider a soil specimen in a consolidated–undrained (CU) triaxial test
(Figure 8.2). The first stage of this test is the same as the CD test–the specimen is
subjected to a constant confining stress, σ3, and allowed to consolidate by opening
the drainage valve. In the second stage of the CU test, however, the specimen
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FIGURE 8.2 Drained and undrained loading conditions.
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FIGURE 8.3 Long-term (drained) shear strength parameters.

is subjected to a monotonically increasing deviatoric stress, σ1 − σ3, while the
valve is closed—hence the term undrained. The undrained condition means that
there will be no volumetric change in the soil specimen (i.e., volume remains
constant). It also means that pore water pressure will be developed inside the soil
specimen throughout the test. Measurement of the pore water pressure allows for
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FIGURE 8.4 Short-term (undrained) shear strength parameters.

effective stress calculations. Typical CU test results (at failure) for a normally
consolidated clay can be presented using Mohr’s circles as shown in Figure 8.4.
The undrained (or short-term) strength parameter of a soil, cu, can be obtained from
the total stress Mohr–Coulomb failure criterion as indicated in the figure (note that
φu = 0). The parameter cu is termed the undrained shear strength of the soil and
must be used in undrained (short-term) analysis of piles. Also, the effective-stress
Mohr–Coulomb failure criterion can be used to estimate the drained (or long-term)
strength parameters, c′ and φ′, as shown in the same figure (c′ = 0 for NC clay).

In a finite element scheme, the drained (or long-term) behavior of a soil can be
simulated using coupled analysis where the pore water pressure is calculated in each
soil element, for a given load increment, and then subtracted from the total stresses
to estimate the effective stresses in the element. These effective stresses control
the deformation and shear strength of the soil element according to the effective
stress principle. Constitutive models such as the cap and Cam clay models can be
used within the finite element framework to determine the deformation caused by
these effective stresses.

Four main measures must be considered for a successful finite element analysis
of soils considering their long-term (drained) behavior: (1) the initial conditions of
the soil strata (initial geostatic stresses, initial pore water pressures, and initial void
ratios) must be estimated carefully and implemented in the analysis. The initial
conditions will determine the initial stiffness and strength of the soil strata; (2) the
boundary conditions must be defined carefully as being pervious or impervious;
(3) the long-term strength parameters of the soil must be used in an appropriate
soil model; and (4) loads must be applied very slowly to avoid the generation of
excess pore water pressure throughout the analysis.

For undrained (or short-term) analyses, the aforementioned measures apply with
the exception of the last measure—the load can be applied very fast instead. This
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is one of the most attractive aspects of coupled analysis. Drained and undrained
analyses (Examples 8.4 and 8.2, respectively) differ only in the way we apply the
load: Very slow loading allows the generated excess pore water pressure to dissipate
and the long-term strength parameters to be mobilized, whereas fast loading does
not allow enough time for the pore water pressure to dissipate, thus invoking the
short-term strength of the soil. This means that there is no need to input the short-
term strength parameters because the constitutive model will react to fast loading
in an “undrained” manner. This is illustrated by the following example.

Consider a 16-m-thick homogeneous clay layer with the long-term strength
parameters c′ = 0 and φ′ = 30◦ (Figure 8.5). Unlike long-term strength parame-
ters, the undrained shear strength parameter cu increases with depth due to the
increase in soil confinement. Here we show how to calculate cu at various depths
using the long-term strength parameters c′ and φ′ along with the cap model within
the finite element framework.

The 16-m-thick clay layer is divided into four equal sublayers as shown in
Figure 8.5a. The mean effective stress, p′ = (σ′

1 + 2σ′
3)/3, in the middle of each

soil sublayer is calculated. To calculate the undrained shear strength in the middle
of each sublayer, an axisymmetric soil element (one element) was used to simulate
a CU triaxial compression test with a confining pressure that corresponds to the
mean effective stress at the center of each of the four soil sublayers. The cap
model is used to describe the behavior of the clay (Cam clay can be used for the
same purpose). The long-term strength parameters c′ = 0 and φ′ = 30◦ are used to
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FIGURE 8.5 Variation of the undrained shear strength of a 16-m-thick homogeneous clay
layer.
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FIGURE 8.6 Determination of undrained shear strength parameters.

calculate the strength parameters for the cap model: d = 0 and β = 50.2◦. The CU
triaxial test simulation consists of two stages. The first stage involves application of
the confining pressure, and the second stage involves application of an increasing
vertical stress until failure. Drainage is allowed during the first stage and suppressed
during the second stage. Mohr’s circles representing failure conditions of these CU
tests, using both total and effective stresses, are shown in Figure 8.6. The undrained
shear strength at the center of each soil sublayer corresponds to the radius of the
respective Mohr’s circle as shown in the figure.

As an alternative method, undrained analysis can utilize the undrained shear
strength parameter, cu, directly in conjunction with a suitable constitutive model.
If the cap model is used, the cap parameters β and d can be calculated using cu and
φu(= 0). This procedure can be used only for undrained (short-term) analysis (see
Example 8.8). Unlike the preceding procedure, this alternative procedure cannot be
used for drained analysis and for cases falling between the drained and undrained
cases (partially drained).

8.3 ESTIMATING THE LOAD CAPACITY OF PILES

Pile load carrying capacity depends on various factors, including (1) pile charac-
teristics such as pile length, cross section, and shape; (2) soil configuration and
short- and long-term soil properties; and (3) pile installation method. Two widely
used methods for pile design will be described: the α and β methods. The former
method is used to calculate the short-term load capacity of piles in cohesive soils,
and the latter method is used to calculate the short- and long-term load capacity of
piles in both cohesive and cohesionless soils.

8.3.1 α-Method

The α-method is used to calculate the load capacity of piles in cohesive soils. This
method is based on the undrained shear strength of cohesive soils; thus, it is well
suited for short-term pile load capacity calculations. The ultimate load capacity
of a pile is the sum of its friction capacity, Qf , and end-bearing capacity, Qb

(Figure 8.1).
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Friction Capacity: α-Method The interface shear stress, fs , between the pile
surface and the surrounding soil determines the value of skin friction, Qf (or shaft
friction.) In this method the interface shear stress is assumed to be proportional to
the undrained shear strength, cu, of the cohesive soil as follows:

fs = αcu (8.1)

where α is a factor that can be obtained from one of several semiempirical equations
available in the literature (e.g., API, 1984; Semple and Ridgen, 1984; Fleming et al.,
1985). For brevity, only one of these equations is given herein. Other equations
may be found in Budhu (1999). The equation by API (1984) suggests values for
α as a function of cu as follows:

α =




1 − cu − 25

90
for 25 kPa < cu < 70 kPa

1.0 for cu � 25 kPa

0.5 for cu � 70 kPa

(8.2)

Now, let’s calculate the friction force between the pile surface and soil:

Qf = fs(contact area) = αcu × perimeter × length (8.3)

For a pile with variable diameter that is embedded in a layered system containing
n layers, one can generalize (8.3) as follows:

Qf =
i=n∑
i=1

[
αi (cu)i × perimeteri × lengthi

]
(8.4)

End-Bearing Capacity: α-Method The bearing capacity of the base of a
pile is called end-bearing capacity. For cohesive soils it can be shown, using
Terzaghi’s bearing capacity equation, that the bearing capacity at the base of the
pile is

fb = (cu)bNc (8.5)

where (cu)b is the undrained shear strength of the cohesive soil under the base of
the pile, and Nc is the bearing capacity coefficient that can be assumed equal to
9.0 (Skempton, 1959). The corresponding load capacity is

Qb = fbAb = (cu)bNcAb (8.6)

where Ab is the cross-sectional area of the tip of the pile.
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Ultimate Load Capacity The ultimate load capacity of a pile is the sum of its
friction capacity and end-bearing capacity:

Qult = Qf + Qb (8.7)

Example 8.1 Consider a concrete-filled pipe pile with diameter D = 0.6 m and
embedded length L = 16 m in a thick homogeneous clay layer as shown in
Figure 8.5a. The undrained shear strength of the clay layer varies with depth as
shown in Figure 8.5b. Calculate the ultimate load capacity of the pile using the
α-method.

SOLUTION: Friction capacity The friction capacity of this pile can be calculated
using (8.4). To simplify the calculation of the friction capacity, let’s divide the soil
into four 4-m-thick sublayers, each having a constant undrained shear strength as
shown in Figure 8.5b. From (8.2), we can calculate α = 0.98 for the third sublayer
(from the top) using cu = 26.8 kPa and α = 0.86 for the fourth sublayer (also
from top) using cu = 37.6 kPa. The other two sublayers have α = 1 since they
have undrained shear strength below 25 kPa. From (8.4),

Qf = [(1)(5.3) + (1)(16.1) + (0.98)(26.8) + (0.86)(37.6)][π(0.6)](4) = 603.2 kN.

End-bearing capacity The end-bearing capacity of this pile can be calculated
using (8.6), in which Ab is the cross-sectional area of the closed-end base: Ab =
πD2/4. Thus,

Qb = (cu)bNcAb = (cu)bNcπD2/4 = (37.6)(9)
π(0.62)

4
= 95.7 kN.

Ultimate load capacity Equation (8.7): Qult = Qf + Qb = 603.2 + 95.7 =
699 kN.

Example 8.2 Consider a concrete-filled pipe pile with diameter D = 0.6 m and
embedded length L = 16 m in a thick homogeneous clay layer as shown in
Figure 8.5 (same as Example 8.1). The undrained shear strength of the clay layer
varies with depth as shown in Figure 8.5b. Calculate the short-term load capacity
of the pile using the finite element method assuming undrained loading conditions.
Compare the results of the finite element analysis with the analytical solution
obtained in Example 8.1 (using the α-method).

SOLUTION: Finite element solution (filename: Chapter8 Example2.cae) In this
example a limit equilibrium solution is sought for a thick layer of clay loaded
in undrained conditions by a 16-m-long concrete-filled pipe pile with D = 0.6 m.
The problem geometry, boundary conditions, and materials are identical to those
of Example 8.1, providing a direct means to compare the finite element analysis
results with the analytical solution obtained in Example 8.1 using the α-method.
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The pile in this example is cylindrical in shape and loaded in the axial direction
only; therefore, the finite element mesh of the pile and the surrounding soil can
take advantage of this axisymmetric condition. This simplification cannot be used
for piles that are loaded with horizontal loads. Such piles should be treated as
three-dimensional objects. It also should be noted that the finite element mesh of
a soil–pile system must include interface elements that are capable of simulating
the frictional interaction between the pile surface and the soil.

It is very difficult, but possible, to simulate the pile–soil interaction during pile
driving. Such simulation is not attempted here. Instead, the pile is assumed to
be embedded in perfect contact with the soil before applying pile loads. Excess
pore water pressures caused by pile driving are assumed to have been dissipated
completely before the application of pile loads.

The two-dimensional axisymmetric model and the finite element mesh analyzed
are shown in Figure 8.7. The clay layer is 22.7 m deep and 15 m wide. The model
considers only one-half of the pile taking advantage of symmetry as indicated
in the figure. The pile is initially in perfect contact with the soil. The interaction
between the pile and the soil is simulated using a penalty-type interface between the
pile and the soil with a friction factor of 0.385. This type of interface is capable
of describing the frictional interaction between the pile surface and the soil in
contact.

Four-node axisymmetric quadrilateral, bilinear displacement, bilinear pore water
pressure elements are used for the clay layer. The elements used for the pile are
four-node bilinear axisymmetric quadrilateral reduced-integration elements (with-
out pore water pressure). The base of the clay layer is fixed in the horizontal and
vertical directions. The vertical boundary on the left side is a symmetry line, and
the vertical boundary on the right side is fixed in the horizontal direction but free
in the vertical direction. It is noted that the mesh is finer in the vicinity of the pile
since that zone is the zone of stress concentration. No mesh convergence studies
have been performed. However, the dimensions of the clay layer are chosen in a
way that the boundary effect on pile behavior is minimized.

The elastic response of the clay is assumed to be linear and isotropic, with a
Young’s modulus of 68.9 × 103 kPa and a Poisson ratio of 0.3. The cap model,
with parameters d = 0 and β = 50.2◦ that were matched to the Mohr–Coulomb
failure criterion parameters c′ = 0 and φ′ = 30◦, is used to simulate the undrained
behavior of the clay. This procedure was explained in details in Section 8.2. The
undrained shear strength of the clay layer, as estimated by this procedure, varies
with depth as shown in Figure 8.5b. Note that tan β = 6 sin φ′/(3 − sin φ′) for
φ′ = 30◦ → β = 50.2◦. Also, d = c′√3 for c′ = 0 → d = 0.

The cap eccentricity parameter is chosen as R = 0.4. The initial cap position
(which measures the initial consolidation of the specimen) is taken as ε

pl
vol(0) = 0.0,

and the cap hardening curve is assumed to be a straight line passing through
two points [(p′ = 0.57 kPa, ε

pl
vol = 0.0) and (p′ = 103 kPa, ε

pl
vol = 0.0032)]. The

transition surface parameter α = 0.1 is assumed. The initial void ratio, e0 = 1.5,
and the vertical and horizontal effective stress profiles of the clay layer are part of
the input data that must be supplied to the finite element program for this coupled
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FIGURE 8.7 Concrete-filled pipe pile embedded in a thick homogeneous clay layer:
(a) problem geometry; (b) finite element discretization; (c) enlarged mesh near the end of
the pile.

(consolidation) analysis. In this analysis, the initial horizontal effective stress is
assumed to be 50% of the vertical effective stress.

The problem is run in two steps. In step 1 the effective self-weight (= γ′z,
where γ′ = γsat − γw and z is the depth below the ground surface) of the clay
layer is applied using the “body-force” option. Note that the groundwater table is
coincident with the ground surface (Figure 8.7a). As mentioned earlier, the clay
layer is assumed to be elastoplastic, obeying the cap model. In general, using
such a model is essential for limit equilibrium analysis. We are concerned with the
ability of the clay layer to withstand the end-bearing stresses and skin shear stresses
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caused by the pile, and models such as the cap model, the Cam clay model, and the
Mohr–Coulomb model can detect failure within the clay layer. During step 1, the
“geostatic” command is invoked to make sure that equilibrium is satisfied within
the clay layer. The geostatic option makes sure that the initial stress condition in
any element within the clay layer falls within the initial yield surface of the cap
model.

In step 2 a coupled (consolidation) analysis is invoked and the pile load is applied
using the vertical displacement boundary condition to force the top surface of the
pile to move downward a distance of 30 cm at a constant rate (3 cm/s). This high
rate of loading is used to make sure that the soil will behave in an undrained manner.
The pile load versus settlement curve obtained from the finite element analysis is
shown in Figure 8.8. It is noted from the figure that the settlement increases as the
load is increased in an approximately linear manner up to about a 570-kN pile load,
at which a vertical lateral displacement of about 1.5 cm is encountered. Shortly after
that, the pile plunges in a fast downward descent, indicating that the load capacity
of the pile has been reached. For comparison, the pile load capacity of 699 kN,
predicted by the α-method (Example 8.1), is also shown in Figure 8.8. It is noted
that the finite element prediction of pile load capacity is approximately 15% smaller
than the bearing capacity predicted by the α-method (i.e., the finite element analysis
is more conservative in this particular case).

Figure 8.9 shows the evolution of excess pore water pressure in three soil ele-
ments located immediately below the pile tip (Figure 8.7c). The increase in excess
pore water pressure during pile loading is expected since the loading is purposely
made undrained.
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FIGURE 8.8 Pile load versus settlement curve: α-method versus FEM.
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FIGURE 8.9 Evolution of excess pore water pressure (during undrained loading) in ele-
ments A, B, and C located immediately below the pile tip (Figure 8.7c).

8.3.2 β-method

This method can be used for both cohesive and cohesionless soils. The method is
based on effective stress analysis and is suited for short- and long-term analyses
of pile load capacity.

Friction Capacity: β-Method Consider a pile embedded in a thick homoge-
neous soil that is fully saturated. Define σ′

h as the average lateral effective stress
exerted on the pile by the surrounding soil. This stress can be taken as the lateral
effective stress at the pile midpoint. The friction stress, fs , between the pile and the
surrounding soil can be calculated by multiplying the friction factor, µ, between
the pile and soil with σ′

h. Thus, fs = µσ′
h. But σ′

h = K0σ
′
v , where σ′

v is the vertical
effective stress at the pile midpoint and K0 is the lateral earth pressure coefficient
at rest. Therefore, fs = µK0σ

′
v .

Now we can calculate the skin friction force between the pile surface and soil:

Qf = fs(contact area) = µK0σ
′
v × perimeter × length

= βσ′
v × perimeter × length (8.8)

where

β = µK0 (8.9)

In general, the lateral earth pressure coefficient at rest is given by

K0 = (1 − sin φ′)(OCR)0.5 (8.10)
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where OCR is the overconsolidation ratio. Recall that OCR = 1 for normally con-
solidated clays and OCR > 1 for overconsolidated clays.

For a pile with a variable diameter that is embedded in a layered system con-
taining n layers, (8.8) can be modified as follows:

Qf =
i=n∑
i=1

[
βi (σ

′
v)i × perimeteri × lengthi

]
(8.11)

Note that (σ′
v)i is the vertical effective stress at the center of soil layer i.

In clays, the value of β can be estimated from (8.9) and (8.10) with µ = tan 2
3φ′

(Burland, 1973). For sands, however, McClellend (1974) suggested values of β

ranging from 0.15 to 0.35. Meyerhof (1976) suggested values of β = 0.44, 0.75,
and 1.2 for φ′ = 28◦

, 35◦, and 37◦, respectively.

End-Bearing Capacity: β-Method Using Terzaghi’s bearing capacity equa-
tion, the bearing capacity at the base of the pile can be calculated:

fb = (σ′
v)bNq + c′

bNc (8.12)

where (σ′
v)b is the vertical effective stress at the base of the pile, c′

b is the cohe-
sion of the soil under the base of the pile, and Nq and Nc are bearing capacity
coefficients. The corresponding load capacity, Qb, is

Qb = fbAb = [(σ′
v)bNq + c′

bNc]Ab (8.13)

where Ab is the cross-sectional area of the base of the pile.
Janbu (1976) presented equations to estimate Nq and Nc for various soils:

Nq =
(

tan φ′ +
√

1 + tan2 φ′
)2

exp(2ηtanφ′) (8.14)

Nc = (
Nq − 1

)
cotφ′ (8.15)

where η is an angle defining the shape of the shear surface around the tip of a pile
as shown in Figure 8.10. The angle η ranges from π/3 for soft clays to 0.58π for
dense sands.

Ultimate Load Capacity The ultimate load capacity of a pile is the sum of its
friction capacity and end-bearing capacity:

Qult = Qf + Qb (8.16)

Example 8.3 Figure 8.11 shows a closed-end pipe pile with a diameter D =
0.6 m and embedded length L = 16 m in a thick homogeneous layer of saturated
clay with a friction angle φ′ = 30◦ and cohesion intercept c′ = 0. The groundwater
table is coincident with the top surface of the soil. Assume that η = π/3 and a
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FIGURE 8.10 Shear surface around the tip of a pile: definition of the angle η. (Adapted
from Janbu, 1976.)
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FIGURE 8.11 Pile configuration for Examples 8.3 and 8.4
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soil–pile friction factor µ = 0.385. Calculate the total load capacity of the pile
using the β-method.

SOLUTION: Friction capacity First, calculate the vertical effective stress at the
pile midpoint:

σ′
v = (17 − 9.81)

(
16

2

)
= 57.52 kPa

Eq. (8.10): K0 = (1 − sin 30◦
)(1)0.5 = 0.5

Eq. (8.9): β = (0.385)(0.5) = 0.1925

Eq. (8.8): Qf = (0.1925)(57.52)[π(0.6)](16) = 334 kN

End-bearing capacity First, calculate the vertical effective stress at the tip of
the pile:

(σ′
v)b = (17 − 9.81)(16) = 115 kPa

Eq. (8.14): using η = π

3
→ Nq = 10.05

Eq. (8.15): Nc = 15.7

Eq. (8.13): Qb = [(115)(10.05) + (0)(15.7)][π(0.32)] = 327 kN

Total load capacity

Eq. (8.16): Qtotal = Qf + Qb = 334 + 327 = 661 kN

Example 8.4 Using the finite element method, calculate the long-term load capac-
ity of a pipe pile with diameter D = 0.6 m and embedded length L = 16 m in a
thick homogeneous clay layer as shown in Figure 8.11 (same as Example 8.3). The
groundwater table is coincident with the top surface of the soil. The saturated clay
has a friction angle φ′ = 30◦ and a cohesion intercept c′ = 0. Assume a soil–pile
friction factor µ = 0.385. Compare the results of the finite element analysis with
the analytical solution obtained in Example 8.3 (using the β-method).

SOLUTION: Finite element solution (filename: Chapter8 Example4.cae) In this
example a limit equilibrium solution is sought for a thick layer of clay loaded
in drained conditions by a 16-m-long concrete-filled pipe pile with D = 0.6 m.
The problem geometry, boundary conditions, and materials are identical to those
of Example 8.3, providing a direct means to compare the finite element analysis
results with the analytical solution obtained in Example 8.3 using the β-method.

The axisymmetric finite element mesh for this problem is identical to the one
used in Example 8.2 (Figure 8.7). The material parameters used for this example
are also identical to those of Example 8.2. The pile is initially in perfect contact
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with the soil. The interaction between the pile and the soil is simulated using a
penalty-type interface between the pile and the soil with a friction factor of 0.385.
This type of interface is capable of describing the frictional interaction between
the pile surface and the soil in contact.

The problem is run in two steps. In step 1 the effective self-weight of the clay
layer is applied using the “body-force” option. During this step, the “geostatic”
command is invoked to make sure that equilibrium is satisfied within the clay
layer. The geostatic option makes sure that the initial stress condition in any element
within the clay layer falls within the initial yield surface of the cap model. This is
identical to step 1 used in Example 8.2.

The main difference between this example and Example 8.2 is the loading
rate applied in step 2: An undrained condition indicates a high loading rate
(Example 8.2), and a drained condition indicates a low loading rate (this example).
Also, the top surface of the clay layer in this example is made permeable to
allow the excess pore water pressure to dissipate. Again, the present example
involves long-term (drained) loading conditions, indicating that the pile should
be loaded very slowly to prevent the generation of excess pore water pressure
anywhere within the finite element mesh. Thus, in step 2 a coupled (consoli-
dation) analysis is invoked and the pile load is applied using the vertical dis-
placement boundary condition to force the top surface of the pile to move
downward a distance of 30 cm at a very small constant rate = 3 × 10−13 cm/s.
This small loading rate is used to make sure that the soil will behave in
a drained manner. To confirm that, the excess pore water pressures in ele-
ments A, B, and C (shown in Figure 8.7c) are plotted in Figure 8.12. It is
noted from the figure that the excess pore water pressure is essentially nil in
these elements during loading, indicating that it is indeed a drained loading
condition.

The pile load versus settlement curve obtained from the finite element analysis
is shown in Figure 8.13. It is noted from the figure that the settlement increases
linearly as the load is increased up to about a 400-kN pile load, at which a pile
settlement of about 1.1 cm is encountered. Shortly after that, the pile plunges in
a fast downward descent, indicating that the load capacity of the pile (530 kN)
has been reached. For comparison, the pile load capacity of 661 kN, predicted
by the β-method (Example 8.3), is also shown in Figure 8.13. It is noted that the
finite element prediction of pile load capacity is approximately 15% smaller than
the bearing capacity predicted by the β-method (i.e., the finite element analysis is
more conservative in this particular case).

8.4 PILE GROUPS

Piles are generally used in groups. A square pile group arrangement is shown in
Figure 8.14. Other arrangements, such as rectangular and circular, are possible. The
spacing, s, between two piles center to center should be greater than 2D, where D

is the pile diameter. A concrete cap is generally used to connect the heads of the
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FIGURE 8.12 Evolution of excess pore water pressure (during drained loading) in ele-
ments A, B, and C located immediately below the pile tip (Figure 8.7c).
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FIGURE 8.14 Pile group.

piles in a pile group. Loads are applied to the cap that transfer them to the piles.
Two mechanisms of pile group failure are possible:

1. Single-pile failure mechanism. In this mechanism each single pile in the group
fails individually, and the failure of all piles occurs simultaneously. In this
case the pile group capacity, (Qult)npiles, is equal to nQult, where n is the
number of piles in the group and Qult is the load capacity of a single pile. Qult

for a single pile can be calculated using the α-method and/or the β-method
described above.

2. Block failure mechanism. In this mechanism the pile group, along with the
soil between the piles, fail as a monolith (big block) that has the dimensions
Bg × Lg × L defined in Figure 8.14. The group load capacity for this failure
mechanism can be calculated using the α-method and/or the β-method applied
to a “mammoth” pile having the dimensions of the failing block.
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8.4.1 α-Method

Recall that the α-method is based on the undrained shear strength of cohesive
soils, and it is suited for short-term pile load capacity calculations. The following
equation is based on the α-method and can be used to calculate pile group capacity
assuming block failure mechanism:

(Qult)block =
{

i=n∑
i=1

[
αi (cu)i × perimeterig × lengthi

]} + (cu)bNc(Ab)g (8.17)

where (Qult)block is the pile group capacity with block failure mechanism,
perimeterig is the perimeter of the pile group = 2(Bg + Lg), and (Ab)g is the
cross-sectional area of the pile group = BgLg.

8.4.2 β-Method

Recall that the β-method can be used for both cohesive and cohesionless soils.
The method is based on effective stress analysis and is suited for short- and
long-term analyses of pile load capacity. The following equation is based on the
β-method and can be used to calculate pile group capacity assuming block failure
mechanism:

(Qult)block =
{

i=n∑
i=1

[
βi (σ

′
v)i × perimeterig × lengthi

]} + [(σ′
v)bNq + c′

bNc](Ab)g

(8.18)

where (Qult)block is the pile group capacity with block failure, perimeterig = 2(Bg +
Lg), and (Ab)g = Bg × Lg.

Example 8.5 Consider a pile group consisting of four concrete piles with a square
cross section 0.6 × 0.6 m2 and positioned as shown in Figure 8.15. The embedded
length of the piles is L = 9.15 m in a thick homogeneous layer of saturated clay
with an average undrained shear strength cu = 14 kPa and a friction angle φ′ = 30◦.
The clay layer underlying the base of the piles has an undrained shear strength
cu = 21.3 kPa and a friction angle φ′ = 30◦. Calculate the total load capacity of
the pile group. Use the α-method and the β-method. All necessary parameters are
included in the figure.

SOLUTION:

Single-pile perimeter = 4(0.6) = 2.4 m

Ab = (0.6)2m2 = 0.36 m2

Perimeterg = (4)(1.8 + 0.3 + 0.3) = 9.6 m

(Ab)g = (1.8 + 0.3 + 0.3)2 = 5.76 m2
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Bg = 1.8 m + 0.6 m 

Lg = 1.8 m + 0.6 m

s = 1.8 m

s = 1.8 m

0.6 m
L = 9.15 m 

Bg

Top Soil: NC Clay
γsat = 18 kN/m3

 cu = 14 kPa
 c' = 0 kPa (long-term)
 φ' = 30º
 µ = 0.3
 η = π/3

Bottom Soil: NC Clay
γsat = 18 kN/m3

 cu = 21.3 kPa
 c' = 0 kPa (long-term)
 φ' = 30º
 µ = 0.3
 η = π/3

GWT

FIGURE 8.15 Pile group consisting of four concrete piles with square cross sections.

Using the α-method, we have the following results:
Block failure mechanism Equation (8.2) yields α = 1 since cu < 25 kPa.

Qf = αcu(perimeterg)L = (1)(14)(9.6)(9.15) = 1230 kN

Qb = 9cu(Ab)g = (9)(21.3)(5.76) = 1106 kN

(Qult)block = 1230 + 1106 = 2336 kN

Single-pile failure mechanism

Qf = αcu(perimeter)(L) = (1)(14)(2.4)(9.15) = 307 kN

Qb = 9cuAb = (9)(21.3)(0.36) = 69 kN

Qult = 307 + 69 = 376 kN

(Qult)npiles = (4)(376) = 1504 kN

Using the β-method, we have:
Block failure mechanism

β = µ(1 − sin φ′) (OCR)0.5 = 0.3(1 − sin 30◦
)(1)0.5 = 0.15

σ′
v = (18 − 9.81)

(
9.15

2

)
= 37.5 kPa (at the midpoint of the pile)



306 PILES AND PILE GROUPS

(σ′
v)b = (18 − 9.81)(9.15) = 74.9 kPa (at the base of the pile)

Nq =
(

tan 30◦ +
√

1 + tan230◦
)2

exp
(

2
π

3
tan 30◦) = 10.05

Nc = (10.05 − 1)cot 30◦ = 15.7

Qf = βσ′
v × perimeterg × length = (0.15)(37.5)(9.6)(9.15) = 494 kPa

Qb = [(
σ′

v

)
b
Nq + c′

bNc

]
(Ab)g = [(74.9)(10.05) + (0)(15.7)](5.76)

= 4336 kPa

(Qult)block = 494 + 4336 = 4830 kN

Single-pile failure mechanism

Qf = (0.15)(37.5)(2.4)(9.15) = 123 kN

Qb = [(74.9)(10.05) + (0)(15.7)](0.36) = 271 kN

Qult = 123 + 271 = 395 kN

(Qult)npiles = (4)(395) = 1578 kN

Compare the load capacities calculated. You will note that the single-pile failure
mechanism using the α-method gives the lowest load capacity, 1504 kN. Thus, the
ultimate load capacity of this pile group is 1504 kN. Assuming a safety factor of
3, the allowable load on this pile group is (1504 kN)/3 = 501 kN.

Example 8.6 Using the finite element method, calculate the total load capacity
of the pile group described in Example 8.5. Assume both (a) undrained and (b)
drained conditions. Compare your answers with those obtained using the α- and
β-methods, respectively (Example 8.5). All necessary parameters are included in
Figure 8.15.

SOLUTION: Finite element solution (filename: Chapter8 Example6 alpha.cae,
Chapter8 Example6 beta.cae) (a) Undrained loading condition In this example
a limit equilibrium solution is sought for a thick layer of clay loaded in undrained
conditions by a pile group consisting of four 9.15-m-long concrete piles. Each
pile has a square cross section of 0.6 × 0.6 m2. The problem geometry, boundary
conditions, and materials are identical to those of Example 8.5, providing a direct
means to compare the finite element analysis results with the analytical solution
obtained in Example 8.5 using the α- and β-methods.

Pile group problems are three-dimensional by nature and are treated as such in
the following finite element analysis. The pile group in this example has a square
arrangement as shown in Figure 8.15; therefore, the finite element mesh of the pile
group and the surrounding soil can take advantage of this symmetric condition.
Only one-fourth of the geometry is considered, as shown in Figure 8.16. The finite
element mesh of this fourth is shown in Figure 8.17. This simplification, however,
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FIGURE 8.16 Simplifying the problem of Example 8.6 using symmetry planes.

cannot be used for pile groups that are loaded laterally. Such problems are not
symmetrical and the entire group should be analyzed together.

As in any soil–pile system, interface elements that are capable of simulating the
frictional interaction between the pile surface and the soil must be used. Note that
in a finite element modeling of a pile group it is not possible to enforce a specific
mode of failure: single–pile failure mechanism or block failure mechanism. Any of
these two mechanisms could occur, depending on problem configuration, properties
of the piles and the surrounding soil, and loading conditions (drained or undrained
loading). In this analysis, the piles are assumed to be embedded in the soil before
applying pile loads. Excess pore water pressures caused by pile driving are assumed
to have been dissipated completely before the application of pile loads.

The three-dimensional finite element mesh (Figure 8.17) comprises two parts:
the concrete pile and the soil. Interface elements between the two parts are used.
Note that the mesh takes advantage of symmetry about two orthogonal planes as
shown in Figures 8.16 and 8.17. The mesh is 15 m long (in the x-direction), 15 m
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FIGURE 8.17 Finite element discretization.

wide (in the y-direction), and 15.15 m high (in the z-direction). Mesh dimensions
should be chosen such that the boundaries do not affect the solution. This means
that the mesh must be extended in all three dimensions. It is accepted that the
length and the width of the mesh should be greater than 30D, where D is the
diameter of the pile; and the height of the mesh should be greater than 2L, where
L is the embedded length of the pile. The present mesh is used only for illustration
and does not conform to these values.

In the analysis, the pile is assumed to be in perfect contact with the soil at the
start. The interaction between the pile and the soil is simulated using penalty-type
interface elements between the pile and the soil with a friction factor of 0.3. This
type of interface is capable of describing the frictional interaction (Coulomb type)
between the pile surface and the soil in contact.

Eight-node linear brick elements with reduced integration and without pore water
pressure are used for the pile. The elements used for the soil are eight-node pore
fluid/stress elements with trilinear displacement, trilinear pore pressure, and reduced
integration. The base of the clay layer is fixed in the x, y, and z directions. There
are two planes of symmetry as shown in Figure 8.17. The first plane allows sliding
in the y and z directions, but prevents displacement in the x-direction. The second
symmetry plane allows sliding in the x and z directions but prevents displacement
in the y-direction. It is noted that the mesh is finer in the vicinity of the pile since
that zone is the zone of stress concentration. No mesh convergence studies have
been performed.
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The elastic response of the clay is assumed to be linear and isotropic, with a
Young’s modulus of 68.9 × 103 kPa and a Poisson ratio of 0.3. The cap model,
with the parameters d = 0 and β = 50.2◦ that were matched to the Mohr–Coulomb
failure criterion parameters c′ = 0 and φ′ = 30◦, is used to simulate the drained
and undrained behavior of the clay. This procedure was explained in detail in
Section 8.2. The undrained shear strength of the clay layer, as estimated by this
procedure, yields cu ≈ 14 kPa at the pile midheight and cu ≈ 21 kPa at the pile
tip. These values are consistent with the undrained shear strength of the top and
bottom clay layers shown in Figure 8.15.

The cap eccentricity parameter is chosen as R = 0.4. The initial cap position
(which measures the initial consolidation of the specimen) is taken as ε

pl
vol(0) = 0.0,

and the cap hardening curve is assumed to be a straight line passing through two
points (p′ = 0.57 kPa, ε

pl
vol = 0.0) and (p′ = 103 kPa, ε

pl
vol = 0.0032). The transi-

tion surface parameter α = 0.1 is assumed. The initial void ratio e0 = 1.5, and the
vertical and horizontal effective stress profiles of the clay layer are part of the input
data that must be supplied to the finite element program for this coupled (consol-
idation) analysis. In this analysis, the initial horizontal effective stress is assumed
to be 50% of the vertical effective stress.

The problem is run in two steps. In step 1 the effective self-weight (= γ′z,
where γ′ = γsat − γw, and z is the depth below the ground surface) of the clay
layer is applied using the “body-force” option. Note that the groundwater table is
coincident with the ground surface (Figure 8.15). As mentioned earlier, the clay
layer is assumed to be elastoplastic obeying the cap model. In general, using such a
model is essential for limit equilibrium analysis. We are concerned with the ability
of the clay layer to withstand the end-bearing stresses and skin shear stresses
caused by the pile, and models like the cap model, the Cam clay model, and the
Mohr–Coulomb model can detect failure within the clay layer. During step 1, the
“geostatic” command is invoked to make sure that equilibrium is satisfied within
the clay layer. The geostatic option makes sure that the initial stress condition in
any element within the clay layer falls within the initial yield surface of the cap
model.

In step 2 a coupled (consolidation) analysis is invoked and the pile load is applied
using the vertical displacement boundary condition to force the top surface of the
pile to move downward a distance of 30 cm at a constant rate (0.003 cm/s). This
loading rate is found sufficient to invoke undrained soil behavior. Figure 8.18 shows
the evolution of excess pore water pressure in a soil element located immediately
below the pile tip. The substantial increase in the excess pore water pressure during
pile loading is indicative that the loading is undrained.

The pile group capacity (= pile load × 4 because of symmetry) versus settlement
curve obtained from the finite element analysis is shown in Figure 8.19. It is noted
from the figure that the settlement increases as the load is increased up to about a
3000-kN pile load, at which a pile group settlement of about 4 cm is encountered.
Shortly after that, the pile moves downward at a greater rate, indicating that the
load capacity of the pile has been reached. For comparison, the pile group capacity
of 1504 kN, predicted by the α-method with the single-pile failure mechanism
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FIGURE 8.18 Evolution of excess pore water pressure (during undrained loading) in a
soil element located immediately below the pile tip.
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FIGURE 8.19 Pile group load versus settlement curve: α-method versus FEM.
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(Example 8.5), is shown in Figure 8.19. The pile group capacity of 2336 kN, pre-
dicted by the α-method with the block failure mechanism (Example 8.5), is also
shown in the figure. It is noted that the finite element prediction of pile group load
capacity is greater than the bearing capacity predicted by the α-method with both
failure mechanisms.

(b) Drained loading condition The problem geometry, boundary conditions,
and materials are identical to those of the undrained loading condition described
in part (a). The finite element solution for the drained loading condition will be
compared with the analytical solution obtained in Example 8.5 using the β-method.
The finite element mesh for this problem is identical to the one used in part (a).
The material parameters used for this example are also identical to those of part
(a). The problem is run in two steps. In step 1 the effective self-weight of the clay
layer is applied in a manner identical to part (a).

The main difference is the loading rate applied in step 2: A drained condi-
tion indicates a low loading rate. Also, the top surface of the clay layer in this
part is made permeable to allow the excess pore water pressure to dissipate. The
present example involves long-term (drained) loading conditions, indicating that
the pile should be loaded very slowly to prevent the generation of excess pore
water pressure anywhere within the finite element mesh. Thus, in step 2 a coupled
(consolidation) analysis is invoked and the pile load is applied using the verti-
cal displacement boundary condition to force the top surface of the pile to move
downward a distance of 30 cm at a very small constant rate = 3 × 10−13 cm/s.
This small loading rate is used to make sure that the soil will behave in a drained
manner. To confirm that, the excess pore water pressure in an element located
immediately below the pile tip is plotted in Figure 8.20. It is noted from the
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FIGURE 8.20 Evolution of excess pore water pressure (during drained loading) in a soil
element located immediately below the pile tip.
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figure that the excess pore water pressure is essentially zero in this element during
loading, indicating that it is indeed a drained loading condition.

The pile group load versus settlement curve obtained from the finite element
analysis is shown in Figure 8.21. It is noted from the figure that the settlement
increases as the load is increased up to about 2000 kN, at which a pile group
settlement of about 2.5 cm is encountered. Following that, the pile group suddenly
moves downward at a much higher rate, indicating that the load capacity of the
pile group has been reached. For comparison, the pile group capacity of 1578 kN,
predicted by the β-method with the single-pile failure mechanism (Example 8.5),
is shown in Figure 8.21. The pile group capacity of 4830 kN, predicted by the
β-method with the block failure mechanism (Example 8.5), is also shown in the
figure. It is noted that the finite element prediction of pile group load capacity
is slightly greater than the bearing capacity predicted by the α-method with the
single-pile failure mechanism, but much smaller than the load capacity predicted
by the α-method with the block failure mechanism.

8.5 SETTLEMENTS OF SINGLE PILES AND PILE GROUPS

Working loads cause piles and pile groups to settle. Calculating such settlements
is usually difficult because of the many factors that must be considered. These
factors include the working load magnitude, the pile shape and dimensions, the
group shape and spacing, the soil–pile interface characteristics, the soil strata stiff-
ness and strength, and the stiffness of the pile(s). Fortunately, the settlements of
the pile head and the cap of a pile group rarely exceed 10 mm when they are
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FIGURE 8.21 Pile group load versus settlement curve: β-method versus FEM.
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subjected to working loads. Note that the working load is several times smaller
than the ultimate capacity of a single pile or a pile group.

There are several methods available to estimate pile and pile group settlements:
empirical, semiempirical, analytical, and numerical methods. Except for the numer-
ical method, these methods are beyond the scope of this book. But for a rough
estimate of the settlement, S, of a single pile subjected to a working axial load, the
following empirical equations can be used: For bored piles, 0.003D ≤ S ≤ 0.01D,
where D is the diameter of the pile; for driven piles, 0.008D ≤ S ≤ 0.012D.

In the realm of finite element analysis, calculating the settlements of single piles
and pile groups at any loading level is readily available as part of the solution. Let’s
take, for instance, the 16-m-long pile analyzed in Example 8.4. Let’s calculate the
settlement of the pile head corresponding to the allowable load, Qall, assuming a
safety factor FS = 3.

The ultimate load Qult = 530 kPa was estimated from the load versus settlement
curve shown in Figure 8.13, which was obtained from the finite element analysis
described in Example 8.4. The allowable load Qall can be calculated by dividing
the ultimate load by the safety factor: Qall = Qult/FS = 530/3 = 177 kPa. The pile
head settlement S ≈ 4 mm that corresponds to a load = 177 kPa can be estimated
with the help of Figure 8.13.

8.6 LATERALLY LOADED PILES AND PILE GROUPS

Fully and partially embedded piles and drilled shafts can be subjected to lat-
eral loads as well as axial loads in various applications, including sign posts,
power poles, marine pilings, and post-and-panel retaining walls. Piles and drilled
shafts resist lateral loads via shear, bending, and earth passive resistance. Thus,
their resistance to lateral loads depends on (1) pile stiffness and strength (pile
configuration, in particular the pile length-to-diameter ratio, plays an important
role in determining pile stiffness, hence its ability to resist shear and bending
moments); (2) soil type, stiffness, and strength; and (3) end conditions: fixed end
versus free end.

Several analytical approaches are available for the design of laterally loaded piles
and drilled shafts. These approaches can be divided into three categories: elastic
approach, ultimate load approach, and numerical approach. The elastic approach is
used to estimate the response of piles subjected to working loads assuming that the
soil and the pile behave as elastic materials. Ultimate loads cannot be calculated
using this approach. (Why?) Matlock and Reese (1960) proposed a method for
calculating moments and displacements along a pile embedded in a cohesionless
soil and subjected to lateral loads and moments at the ground surface. They used a
simple Winkler’s model that substitutes the elastic soil that surrounds the pile with
a series of independent elastic springs. Using the theory of beams on an elastic
foundation, they were able to obtain useful equations that allow the calculation of
lateral deflections, slopes, bending moments, and shear forces at any point along
the axis of a laterally loaded pile. A similar elastic solution by Davisson and Gill
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(1963) is also available for laterally loaded piles embedded in cohesive soils. Note
that this approach requires that the coefficient of subgrade reaction at various depths
be known. Best results can be obtained if this coefficient is measured in the field,
but that is rarely done. Several methods that use the ultimate load approach are
available for the design of laterally loaded piles and drilled shafts (e.g., Broms,
1965; and Meyerhof, 1995). These methods provide solutions in the form of graphs
and tables that are easy for students and engineers to use.

8.6.1 Broms’ Method

The ultimate load approach embodied in Broms’ method is suitable for short and
long piles, for restrained- and free-headed piles, and for cohesive and cohesionless
soils. A short pile will rotate as one unit when it is subjected to lateral loads as
shown in Figure 8.22a. The soil in contact with the short pile is assumed to fail
in shear when the ultimate lateral load is reached. On the other hand, a long pile
is assumed to fail due to the bending moments caused by the ultimate lateral load;
that is, the shaft of the pile will fail at the point of maximum bending moment,
forming a plastic hinge as shown in Figure 8.22b. Also, the term restrained-headed
pile indicates that the head of the pile is connected to a rigid cap that prevents the
head of the pile from rotation. Broms’ method assumes that the pile is equivalent
to a beam on an elastic foundation.

Plastic
Hinge

Long Pile 

Lateral Load 

Short Pile 

Lateral Load

(a) (b)

FIGURE 8.22 Definition of (a) short and (b) long piles in terms of lateral loading.
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FIGURE 8.23 Broms’ method solution for piles embedded in cohesive soils: (a) short
piles; (b) long piles.

Broms’ method presents the solution for short piles embedded in cohesive soils
with a set of curves shown in Figure 8.23a. The curves relate the pile’s embedment
length-to-diameter ratio, L/D, to the normalized ultimate lateral force, Qu/cuD

2,
for various e/D ratios. In general, piles having a length-to-diameter ratio L/D

greater than 20 are long piles. Figure 8.23b can be used for long piles embedded
in cohesive soils. The curves in this figure relate the normalized ultimate lateral
force, Qu/cuD

2, to the normalized yield moment of the pile, Myield/cuD
3, for

various e/D ratios. These curves are used only when L/D > 20 and when the
moment generated by the ultimate lateral load is greater than the yield moment of
the pile.

For short piles embedded in cohesionless soils, Broms’ method provides the
curves given in Figure 8.24a, which relate the pile’s embedment length-to-diameter
ratio L/D to the normalized ultimate lateral force Qu/KpD3γ for various e/D

ratios. Note that Kp is the passive lateral earth pressure coefficient and γ is the
unit weight of the soil around the pile.

Figure 8.24b can be used for long piles embedded in cohesionless soils. The
curves in this figure relate the normalized ultimate lateral force Qu/KpD3γ to the
normalized yield moment of the pile Myield/KpD4γ for various e/D ratios. These
curves are used only when L/D > 20 and when the moment generated by the
ultimate lateral load is greater than the yield moment of the pile.
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FIGURE 8.24 Broms’ method solution for piles embedded in cohesionless soils: (a) short
piles; (b) long piles.

Example 8.7 Using Broms’ method, calculate the ultimate lateral load capacity
of the pile shown in Figure 8.25. The embedded potion of the pile is 3.66 m long
and is made of a 0.75-m-diameter concrete cylinder (bored pile). The aboveground
portion of the pile is 3.96 m long and is made of an HP steel section. The lateral

L = 3.66 m

3.64 m

e = 3.05 m

0.91 m

D = 0.75 m

Qu

0.61 m

0.61 m

0.61 m

0.91 m cu = 131 kPa

cu = 120 kPa

cu = 207 kPa

cu = 167 kPa

cu = 161 kPa

FIGURE 8.25 Problem configuration for Example 8.7: calculation of the ultimate lateral
load capacity of a pile.
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load is applied 3.05 m above the ground level. The soil consists of five layers with
varying undrained shear strengths as indicated in the figure.

SOLUTION: Let’s calculate the average undrained shear strength of the five layers:

cu = 131 + 120 + 207 + 167 + 161

5
= 157 kPa

L

D
= 3.66

0.75
= 4.88 < 20 → short pile

e

D
= 3.05

0.75
= 4

From Figure 8.23a (Broms’ method for short piles in cohesive soils) we obtain
the normalized ultimate lateral force Qu/cuD

2 ≈ 3. Thus, the ultimate lateral load
capacity is

Qu ≈ 3cuD
2 ≈ 3(157)(0.75)2 ≈ 265 kN

8.6.2 Finite Element Analysis of Laterally Loaded Piles

Finite element analysis of laterally loaded piles is similar to that of axially loaded
piles except for loads that are applied in the horizontal direction at or above the
ground level. These loads can be concentrated loads or moments or a combination
of the two. In the case of an axially loaded pile, the finite element mesh of the pile
and the surrounding soil can take advantage of axisymmetry. Unfortunately, this
simplification cannot be taken advantage of for piles that are loaded with lateral
loads. Such piles should be treated using three-dimensional analysis as shown in
the following example.

Example 8.8 Using the finite element method, calculate the ultimate lateral load
capacity of the pile described in Example 8.7. Assume undrained loading condi-
tions. Compare your answer with that obtained using Broms’ method (Example 8.7).
Also, compare the lateral load–displacement curve from your finite element anal-
ysis with the field test results obtained by the Ohio Department of Transportation
(ODOT) on the same pile. Actually, the pile configuration, soil strata, and soil prop-
erties assumed in Examples 8.7 and 8.8 are taken from an experiment conducted
by ODOT.

SOLUTION: Finite element solution (filename: Chapter8 Example8.cae) In this
example a limit equilibrium solution is sought for clay strata loaded in undrained
conditions by a single pile with a lateral load applied above ground level. The
problem geometry, boundary conditions, and materials are identical to those of
Example 8.7, providing a direct comparison of the finite element analysis results
with the analytical solution obtained in Example 8.7 using Broms’ method.
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Piles with lateral loads are three-dimensional by nature and will be treated as
such in the following finite element analysis. Note that this problem is symmet-
rical about a plane that contains the axis of the pile and the line of action of the
lateral load (Figure 8.26). Thus, the finite element mesh of half of the pile and
the surrounding soil is considered as shown in Figure 8.27. Interface elements that

Plane of Symmetry

Concrete Pile

HP Steel Section

FIGURE 8.26 Simplified configuration using a plane of symmetry.

Plane of symmetry

Z

X

Y

Left
Boundary
Ux = 0

Right
Boundary
Ux = 0

Back Boundary
Uy = 0

Bottom Surface
Ux = Uy = Uz = 0

FIGURE 8.27 Finite element discretization.
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are capable of simulating the frictional interaction between the pile surface and
the soil are used. Since this is a nondisplacement (bored) pile, the excess pore
water pressure after pile installation is assumed to be zero in this finite element
analysis.

The three-dimensional finite element mesh (Figure 8.27) comprises two parts:
the concrete pile with the aboveground HP section and the soil. Note that the mesh
takes advantage of symmetry about a vertical plane as indicated in Figure 8.27.
The mesh is 30 m long (in the x-direction), 15 m wide (in the y-direction), and
7.3 m high (in the z-direction). Mesh dimensions should be chosen such that the
boundaries do not affect the solution. This means that the mesh must be extended
in all three dimensions, and that is considered in this mesh.

In the analysis, the pile is assumed to be in perfect contact with the soil at
the start. Interaction between the pile and the soil is simulated using penalty-type
interface elements between the pile and the soil with a friction factor of 0.3. This
type of interface is capable of describing the frictional interaction (Coulomb type)
between the pile surface and the soil in contact.

Eight-node linear brick elements with reduced integration and without pore water
pressure are used for the pile. The elements used for the soil are eight-node pore
fluid/stress elements with trilinear displacement, trilinear pore pressure, and reduced
integration. The base of the clay strata is fixed in the x, y, and z directions. There
is one plane of symmetry that allows sliding in the x and z directions, as shown in
Figure 8.27. It is noted that the mesh is finer in the vicinity of the pile since that
zone is the zone of stress concentration. No mesh convergence studies have been
performed.

The elastic response of the clay layers is assumed to be linear and isotropic, with
a Young’s modulus that is a function of the undrained shear strength of each layer
as indicated in Table 8.1. The cap model parameters d and β are given in the same
table for each soil layer. These parameters were matched to the Mohr–Coulomb
failure criterion parameters cu (Table 8.1) and φu = 0 to simulate the undrained
behavior of the clay layers.

The cap eccentricity parameter is chosen as R = 0.1 for all clay layers. The
initial cap position (which measures the initial consolidation of the specimen) is
taken as ε

pl
vol(0) = 0.0, and the cap hardening curve is assumed to be a straight

line passing through two points [(p′ = 35 kPa, ε
pl
vol = 0.0) and (p′ = 1034 kPa,

ε
pl
vol = 0.0464)]. The transition surface parameter α = 0 is assumed. The initial void

TABLE 8.1 Undrained Soil Properties

Soil Layer Depth (m) cu (kPa) E (MPa) d (kPa) β

1 (top) 0–0.91 131 32.7 226 0
2 0.91–1.52 120 30 208 0
3 1.52–2.13 207 51.7 358 0
4 2.13–2.74 167 41.9 290 0
5 (bottom) 2.74–7.31 161 40.3 280 0
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ratio e0 = 1.5 and the vertical and horizontal effective stress profiles of the clay
strata are part of the input data that must be supplied to the finite element program
for this coupled (consolidation) analysis. In this analysis, the initial horizontal
effective stress is assumed to be 50% of the vertical effective stress.

The problem is run in two steps. In step 1 the effective self-weight (= γ′z, where
γ′ = γsat − γw and z is the depth below the ground surface) of the clay layer is
applied using the “body-force” option. During step 1, the “geostatic” command
is invoked to make sure that equilibrium is satisfied within the clay layer. The
geostatic option makes sure that the initial stress condition in any element within
the clay strata falls within the initial yield surface of the cap model.

In step 2 a coupled (consolidation) analysis is invoked and the pile lateral load
is applied using the concentrated load option. A loading rate of 0.891 kN/s is
used and found sufficient to invoke undrained soil behavior (because of the low
permeability of the soil). The pile lateral load capacity (= pile load × 2 because of
symmetry) versus displacement curve obtained from the finite element analysis is
shown in Figure 8.28. It is noted from the figure that the horizontal displacement
increases as the lateral load is increased up to about a 475-kN pile load, at which
a pile lateral displacement of about 5 cm is encountered. Shortly after that, the
pile moves laterally at a greater rate, indicating that the lateral load capacity of
the pile has been reached. For comparison, the pile lateral load capacity of 265 kN
predicted by Broms’ method (Example 8.7) is shown in Figure 8.28. It is noted
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FIGURE 8.28 Lateral load versus lateral displacement: FEM versus Broms’ solution and
experimental data.
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that the finite element prediction of pile lateral load capacity is about two times
greater than the capacity predicted by Broms’ method.

Figure 8.28 includes the load–displacement curve obtained from the field test
conducted on the same pile by ODOT. The finite element results are in relatively
good agreement with the measured results. Note that the ODOT test included two
cycles of loading and unloading, and that the pile test was terminated at a lateral
load approaching 480 kN. It can be concluded from the figure that the ultimate
lateral load of the pile predicted by Broms’ method grossly underestimated the
measured lateral load capacity of the pile.

Figure 8.29 shows the distribution of the horizontal stresses within the soil
strata that corresponds to the ultimate lateral load of the pile (≈ 475 kN). This
stress distribution is consistent with the stress distribution expected for a short pile
with lateral loading. A short pile will rotate, acting as one unit, when subjected
to a lateral load as indicated in Figure 8.22a. Intuitively, this type of rotation
would cause a passive earth pressure distribution similar to the one shown in
Figure 8.29.

Example 8.9 A post-and-panel wall is a wall type that has gained some use
because it offers advantages under certain conditions. A typical post design consists
of a steel H section set in a column of concrete as shown in Figure 8.30. The column
of concrete extends from the final ground surface to the base elevation computed

(Ave. Crit.: 75%)
SNEG, (fraction = −1.0)
S, S11

−3.000e+03
−2.500e+03
−2.000e+03
−1.500e+03
−1.000e+03
−5.000e+02

−1.213e+07

+1.202e+07 psf

1 psf = 0.048 kPa

FIGURE 8.29 Contours of lateral earth pressure at failure.
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Active Earth Pressure

Short Pile

Short Pile

Active Earth Pressure

Active Earth Pressure

Concrete Panel

HP Section

FIGURE 8.30 Post-and-panel wall system.

for the post. The steel H section extends from the bottom of the concrete to the
design elevation of the top of the wall. Installing wall panels between the exposed
sections of the posts completes construction. The panels are held in place by the
flanges of the H sections. The concrete column is usually in the range 0.6 to 1.2 m
in diameter.

The procedure for the design of a post-and-panel wall involves selecting a post
spacing, determining the soil and surcharge loads acting on that post and then
determining the optimum length and diameter of the post necessary to develop
passive soil pressures sufficient to resist loads acting on the post. A post-and-panel
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wall may be designed either as a cantilever system or as a tieback system. This
type of wall may be used either for conventional “bottom-up” construction or to
retain existing facilities by “top-down” construction.

It is proposed that the concrete column be eliminated and replaced by a steel
plate of the same width and length as the concrete column, as shown in Figure 8.31.
This plate would be welded to the H section and then the composite unit would be
driven into the ground to the plan base elevation required. The remainder of the
construction would proceed without change. This alternative post system (termed

Active Earth Pressure

Active Earth Pressure

Active Earth Pressure

Concrete Panel

HP Section

Steel Plate

Steel Plate

HP Section

FIGURE 8.31 Plate system alternative to the post-and-panel wall system.
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“the plate system” henceforth) offers benefits such as ease of construction, reduced
construction time, and lower wall costs. Although this system seems feasible, there
are concerns regarding its performance, in particular the amount of bending in the
post and the defection of the wall due to active earth pressures exerted by the
retained soil.

The objective of this example is to assess the feasibility of the plate system.
If the system is deemed feasible, one can use finite element analyses to develop
design criteria (not part of this exercise) for the plate system based on exposed
wall heights, applied soil loads, post dimensions, and parameters of the retained
soil and the foundation soil.

SOLUTION: Finite element solution (filename: Chapter8 Example9 concrete.cae,
Chapter8 Example9 steel.cae) In this example we carry out a preliminary feasi-
bility analysis of the proposed plate system using the finite element code that was
verified in Example 8.8 by simulating the behavior of a full-scale field test of a
post with a concrete column that was performed by the Ohio DOT. The feasibility
analysis consists of an objective comparison of the behavior of a conventional post
with a concrete column and a post with a welded plate. The two post systems ana-
lyzed herein are shown in Figure 8.32. In the figure the conventional post system
consists of a 5.3-m-long concrete column with a diameter of 0.91 m. The above-
ground H section is 5.3 m long. The plate system proposed consists of a 5.3-m-long,
0.91-m-wide, 25-mm-thick steel plate welded to a 10.6-m-long post with an H
section (5.3 m aboveground). In both systems, the lateral load is applied at the one-
third point measured from ground level. This is to simulate the active force caused

Concrete
ColumnSteel Plate:

5.3 m × 0.91 m × 25 mm

H Section

H Section3.53 m

5.3 m

0.91 m

1.77 m

Active Earth
Pressure

Active Earth
Pressure

(a) (b)

FIGURE 8.32 Problem configuration for Example 8.9: (a) post with plate system; (b) post
with concrete column system.
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by the triangular distribution of the lateral earth pressure exerted by the retained
soil on the concrete panel (see Figure 8.30). The foundation soil is assumed to
be a medium-dense sand with c′ = 0 and φ′ = 37◦. The three-dimensional finite
element meshes of the two systems are not shown here but resemble the mesh used
in Example 8.8.

Figure 8.33 shows the predicted horizontal displacement versus applied lateral
load for both post systems. In the figure the horizontal displacement is the displace-
ment of the post at ground level. It is clear from the figure that the conventional post
with concrete column system is much stiffer than the plate system proposed. With
reference to Figure 8.31, for a 5.3-m-high concrete panel spanning 3 m between
two posts center to center, the active lateral force exerted on the concrete panel is
approximately 200 kN. From Figure 8.33 this lateral load will cause a horizontal
displacement of 4 mm in the conventional post with a concrete column system. By
contrast, the same load will cause 25 mm of horizontal displacement in the plate
system proposed. This large difference in displacement is attributed to the large
flexural stiffness of the concrete column in a conventional post system compared
to the flexural stiffness of the 25-mm-thick steel plate in the plate system proposed.
Using typical values of Young’s moduli for steel and concrete (Esteel = 206 GPa
and Econcrete = 28.7 GPa), we can calculate the stiffness of the concrete column as

EconcreteIcolumn

Lcolumn
= Econcrete

( 1
4πr4

)
Lcolumn

= 28.7
[ 1

4π(0.457)4
]

5.3
= 186 × 103 kN · m
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FIGURE 8.33 Lateral load versus lateral displacement for the plate and the post-and-panel
wall systems.
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and the stiffness of the steel plate is

EsteelIplate

Lplate
= Esteel

(
bt3/12

)
Lplate

= (206)(0.91)[(0.0254)3/12]

5.3
= 48.3 kN · m

This means that the stiffness of the concrete column is approximately 4000 times
greater than the stiffness of the steel plate for this specific example!

A question arises now: Is 25 mm of horizontal displacement tolerable for the
plate system proposed under a working load of 200 kN? If the answer is no, the
plate system proposed needs to be improved. In such a case one can increase
the stiffness of the plate and the stiffness of the post (H section). Note that this
discussion is based on only a single analysis, and many other cases need to be
considered before offering remedies for the plate system proposed. Nevertheless,
if more stiffness is needed, one can increase the thickness, and possibly the width,
of the plate. Also, plate stiffeners can be used for added stiffness (stiffeners are
welded steel sheets that are orthogonal to the plate). Anchors can also be used to
reduce lateral displacements. Another option is to increase the embedded length
of the post and the welded plate. All these options can be investigated easily
using the finite element mesh provided with this example (with minor modifica-
tions).

PROBLEMS

8.1 A concrete-filled pipe pile (Figure 8.34) with an external diameter D =
0.5 m and length L = 18.5 m is driven into a thick homogeneous NC clay
layer (the embedded length of the pile is 18 m). The undrained shear strength
of the NC clay layer varies with depth: cu = (10 + 5z) kPa. The groundwater
table is 3 m below the ground surface, the bulk unit weight of the soil is
18 kN/m3, and the saturated unit weight is 19 kN/m3. Calculate the ultimate
load capacity of the pile using the α-method.

8.2 Redo Problem 8.1 using the finite element method. Since the pile has a cir-
cular cross section and is axially loaded, it can be assumed axisymmetric.
If the cap model is used, the cap parameters β and d can be calculated
using the short-term strength parameters cu and φu = 0 (divide the clay
layer into several layers to account for the variation of cu with depth). The
cap eccentricity parameter for this soil is R = 0.5. The initial cap position
(which measures the initial consolidation of the specimen) is ε

pl
vol(0) = 0.0,

and the cap hardening curve is a straight line passing through two points
[(p′ = 1 kPa, ε

pl
vol = 0.0) and (p′ = 500 kPa, ε

pl
vol = 0.012)]. The transition

surface parameter is α = 0.05. Compare the results of the finite element
analysis with the analytical solution obtained in Problem 8.1.
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GWT
NC Clay

γ = 18 kN/m3

γsat = 19 kN/m3

cu = (10 + 5z) kPa

D = 0.5 m

15 m

3 m

0.5 m

Qult

D = 0.5 m

FIGURE 8.34

8.3 An open-ended steel tube pile (Figure 8.35) with an external diameter D =
0.5 m and a wall thickness of 6 mm is driven into a thick homogeneous layer
of saturated clay with a friction angle φ′ = 33◦ and cohesion intercept c′ = 0.
The groundwater table is coincident with the top surface of the soil. Assume
that η = π/3 and a soil–pile friction factor µ = 0.35. Using the β-method,
calculate the required length of the pile to carry an ultimate load of 900 kN.

GWT

NC Clay
γsat = 19 kN/m3

L = ?

Qult = 900 kN

D = 0.5 m

D = 0.5 m

6 mm

φ′ = 33°
c′ = 0
η = π/3
µ = 0.35

FIGURE 8.35
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8.4 Using the finite element method with the cap model, calculate the ultimate
load capacity of a 20-m-long open-ended steel tube pile (Figure 8.35) with
an external diameter D = 0.5 m and a wall thickness of 6 mm. The pile is
driven into a thick homogeneous layer of saturated clay with a friction angle
φ′ = 33◦ and cohesion intercept c′ = 0. The groundwater table is coincident
with the top surface of the soil. Assume a soil–pile friction factor µ = 0.35.

The cap parameters β and d can be calculated using the long-term strength
parameters φ′ = 33◦ and c′ = 0. The cap eccentricity parameter for this soil
is R = 0.5. The initial cap position (which measures the initial consolidation
of the specimen) is ε

pl
vol(0) = 0.0, and the cap hardening curve is a straight

line passing through two points [(p′ = 1 kPa, ε
pl
vol = 0.0) and (p′ = 500 kPa,

ε
pl
vol = 0.012)]. The transition surface parameter is α = 0.05.

8.5 Redo Problem 8.4 using the Cam clay model. The Cam clay parameter M

can be calculated from the long-term strength parameter φ′ = 33◦. The soil
has λ = 0.12, κ = 0.02, e0 = 1.42, and OCR = 1.2.

8.6 Calculate the total settlement (elastic settlement + consolidation settlement)
of the pile in Problem 8.4. Use a working load that is four times smaller
than the ultimate load capacity calculated in Problem 8.4.

8.7 A concrete-filled pipe pile (Figure 8.36) with an external diameter D =
0.8 m and length L = 25 m is driven into a 10-m-thick soft clay layer
underlain by a stiff clay layer. The undrained shear strength of the normally
consolidated soft clay layer is cu = 50 kPa, its effective strength parameters
are φ′ = 18◦ and c′ = 0, and its saturated unit weight is 18.5 kN/m3. On the

GWT

D = 0.8 m

D = 0.8 m

15 m

10 m

Qult

OC Clay
OCR = 2

NC Clay
γsat = 18.5 kN/m3

cu = 50 kPa
φ′ = 18°
c′ = 0

γsat = 19 kN/m3

cu = 200 kPa
φ′ = 22°
c′ = 0

FIGURE 8.36
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other hand, the overconsolidated clay layer has an overconsolidation ratio of
2, an undrained shear strength of 200 kPa, effective strength parameters of
φ′ = 22◦ and c′ = 0, and a saturated unit weight of 19 kN/m3. The ground-
water table is coincident with the ground surface. Calculate the short- and
long-term ultimate load capacity of the pile using the α- and β-methods.

8.8 Consider a pile group consisting of four concrete piles with a square cross
section 0.9 × 0.9 m2 and positioned as shown in Figure 8.37. The embedded
length of the piles is L = 20 m. The piles are driven into a thick homo-
geneous layer of saturated clay with an average undrained shear strength
cu = 74 kPa and a friction angle φ′ = 23◦. The clay layer under the base of
the piles has an undrained shear strength cu = 121 kPa and a friction angle
φ′ = 27◦. Calculate the ultimate load capacity of the pile group. Use the α-
and β-methods. All parameters needed are included in the figure.

S = 4 m

S = 4 m

L = 20 m
0.9 m

Bg

Top Soil: NC Clay

Bottom Soil: NC Clay

GWT

0.9 m × 0.9 m 

γsat = 18 kN/m3

cu = 74 kPa
c′ = 0 kPa (long-term)
φ′ = 23°
µ = 0.3
η = π/3

γsat = 18 kN/m3

cu = 121 kPa
c′ = 0 kPa (long-term)
φ′ = 27°
µ = 0.3
η = π/3

FIGURE 8.37

8.9 Redo Problem 8.8 using the finite element method. Assume both undrained
and drained conditions. For drained conditions, the cap parameters β and
d can be calculated using the long-term strength parameters φ′ and c′ for
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each soil layer. For undrained conditions they can be calculated using the
undrained shear strength cu for each soil layer. The top soil layer has the
following parameters: the cap eccentricity parameter R = 0.4, the initial
cap position (which measures the initial consolidation of the specimen) is
ε

pl
vol(0) = 0.0, the cap hardening curve is a straight line passing through two

points [(p′ = 1 kPa, ε
pl
vol = 0.0) and (p′ = 500 kPa, ε

pl
vol = 0.025)], and the

transition surface parameter is α = 0.1. The bottom soil layer has R = 0.4,
ε

pl
vol(0) = 0.002, the cap hardening curve is a straight line passing through

two points [(p′ = 1 kPa, ε
pl
vol = 0.0) and (p′ = 500 kPa, ε

pl
vol = 0.01)], and

α = 0.1.

8.10 Calculate the total settlement (elastic settlement + consolidation settlement)
of the pile group in Problem 8.9. Use a working load that is three times
smaller than the ultimate load capacity calculated in Problem 8.9.

8.11 Using Broms’ method, calculate the ultimate lateral load capacity of the
0.75-m-diameter concrete (bored) pile shown in Figure 8.38. The embedded
portion of the pile is 25 m long. The aboveground portion of the pile is 5 m
long. The lateral load is applied 3 m above ground level. The soil consists of
two layers: a soft clay layer, underlain by a stiff clay layer, as shown in the
figure. The average undrained shear strength of the top soil layer is cu = 74
kPa and its friction angle is φ′ = 23◦. The bottom clay has an undrained
shear strength cu = 121 kPa and a friction angle φ′ = 27◦.

GWT

D = 0.75 m

D = 0.75 m

15 m

10 m

Qult2 m

3 m

OC Clay
OCR = 1.5

NC Clay
γsat = 18 kN/m3

cu = 74 kPa
φ′ = 23°
c′ = 0

γsat = 18.5 kN/m3

cu = 121 kPa
φ′ = 27°
c′ = 0

FIGURE 8.38
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8.12 Using the finite element method, calculate the ultimate lateral load capacity
of the pile described in Problem 8.11. Assume undrained loading condi-
tions. The cap parameters β and d can be calculated using the undrained
shear strength cu for each soil layer. The top soil layer has the following
parameters: the cap eccentricity parameter R = 0.4, the initial cap posi-
tion (which measures the initial consolidation of the specimen) is ε

pl
vol(0) =

0.0, the cap hardening curve is a straight line passing through two points
[(p′ = 1 kPa, ε

pl
vol = 0.0) and (p′ = 500 kPa, ε

pl
vol = 0.025)], and the tran-

sition surface parameter is α = 0.1. The bottom soil layer has: R = 0.4,
ε

pl
vol(0) = 0.002, the cap hardening curve is a straight line passing through

two points [(p′ = 1 kPa, ε
pl
vol = 0.0) and (p′ = 500 kPa, ε

pl
vol = 0.01)], and

α = 0.1. Compare your answer with that obtained using Broms’ method
(Problem 8.11). What is the lateral displacement of the pile at the point of
load application when the applied load is one-third of the ultimate load?



CHAPTER 9

PERMEABILITY AND SEEPAGE

9.1 INTRODUCTION

Soils have interconnected voids that form many tortuous tiny tubes that allow water
to flow. The average size of these tubes depends on soil porosity, which in turn
determines how easy (or difficult) it is for water to seep through the soil. Being able
to calculate the quantity of water flowing through a soil and the forces associated
with this flow is crucial to the design of various civil engineering structures, such
as earth dams, concrete dams, and retaining walls.

The coefficient of permeability (or permeability) in soil mechanics is a measure
of how easily a fluid (water) can flow through a porous medium (soil). Soils with
coarser grains have larger voids; therefore, their permeabilities are larger. It follows
that gravels are more permeable than sands, and sands are more permeable than
silts. Because of their extremely small permeabilities, clays are used to construct
the cores of earth dams that act as water barriers. In the environmental engineering
literature, hydraulic conductivity is often used instead of coefficient of permeability,
but they have the same meaning.

The flow of water through soils, called seepage, occurs when there is a difference
in the water level (energy) on the two sides of a structure such as a dam or a sheet
pile, as shown in Figure 9.1. The side with a higher water level is called upstream,
and the side with a lower water level is called downstream. Water seeps through
the soil under a dam from the zone of high energy (upstream) to the zone of low
energy (downstream) in accordance with Bernoulli’s equation. The flow velocity
is governed by Darcy’s equation, which requires knowledge of the coefficient of
permeability. It is often necessary to calculate the quantity of seepage (e.g., through
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Datum
Flow Direction

h2

hL = h1 − h2h1
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Impermeable Soil

Concrete Dam

Upstream

Downstream

1 2

FIGURE 9.1 Seepage through a porous medium.

an earth dam, underneath a concrete dam, or around a sheet pile), and a good
estimate of the soil’s coefficient of permeability is needed.

The coefficient of permeability k is a soil parameter that depends on the average
size of the pores in the soil and is related to the distribution of particle sizes, particle
shape, and soil structure. Permeabilities vary widely depending on soil type. The
ratio of the permeability of a typical sand to that of a typical clay can be on the
order of 106. A small fraction of fine material in a coarse-grained soil can lead to
a significant reduction in its permeability.

9.2 BERNOULLI’S EQUATION

For a steady-state flow of a nonviscous incompressible fluid, Bernoulli’s equation
(9.1) calculates the total head at a point as the summation of three components:
pressure head, elevation head, and velocity head [i.e., total head (h) = pressure
head (hp) + elevation head (he) + velocity head (hv)]:

h = hp + he + hv = u

γw

+ z + v2

2g
(9.1)

where u is the fluid pressure, v the velocity at a point within the fluid, and g

the gravitational acceleration. The total head and its three components have length
units. The elevation head is measured with respect to an arbitrarily selected datum
as shown in Figure 9.2. Note that the selected datum must be a horizontal line. If
a point such as point A in Figure 9.2 is above the datum, its elevation head is pos-
itive. If a point is below the datum then its elevation head is negative. At point A,
the fluid pressure u is the pressure felt by an observer (diver) located at that point.
The pressure head at point A is given as hp = u/γw. The velocity head is given
as hv = v2/2g. If we position the tip of a standpipe (piezometer) at point A, the
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Datum

A

hp

he = ZA

v

h Water

Impermeable Layer

hv

FIGURE 9.2 Steady-state flow of a non viscous incompressible fluid.

water will rise inside it to a height equal to the sum of the pressure head and the
velocity head, as shown in Figure 9.2.

Water flowing through soil usually has a very small flow velocity. This means
that the velocity head in (9.1) can be neglected. Thus, Bernoulli’s equation for flow
through soils reduces to

h = hp + he = u

γw

+ z (9.2)

In this equation the total head h at a given point represents the energy possessed
by the fluid at that point. While flowing through soil from a point of higher total
head (h1) to a point of a lower total head (h2), water loses some energy, due to
soil resistance (friction). This loss of energy, expressed as the total head loss hL, is
the difference in water levels between upstream and downstream (hL = h1 − h2),
as shown in Figure 9.1. In soil mechanics the fluid pressure u is called pore water
pressure or pore pressure. The pore pressure at any point in the flow region is
given as

u = hpγw (9.3)

The hydraulic gradient (i) is defined as the total head loss per unit length.
Consider a particle of water flowing from point A to point B as shown in Figure 9.3.
The total head at point A is hA = uA/γw + ZA, and the total head at point B is
hB = uB/γw + ZB . Note that the total head at A is greater than that at B, which
is why the water particle travels from A to B. The head loss between A and B is
hA − hB . The average hydraulic gradient between A and B is the head loss between
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uA/γw uB/γw
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∆h = hA − hB

LA − B

hA > hB → flow from A to B

FIGURE 9.3 Definition of head loss and hydraulic gradient.

A and B divided by the length AB along the flow path:

iA-B = hA − hB

LA-B
= (uA/γw + ZA) − (uB/γw + ZB)

LA-B
(9.4)

Example 9.1 A 0.5-m-long soil specimen is subjected to a steady-state flow with
a constant head loss hL = 1.5 m as shown in Figure 9.4. Calculate the total head
at point C.

X

Y

Water

hL = 1.5 m

Z
0.2 m

0.3 m

A

B

C
Datum

FIGURE 9.4 Steady-state flow with a constant head loss.
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SOLUTION: Let us assume that the datum is coincident with the downstream water
as shown in Figure 9.4. To calculate the total head at point C, we would need the
value of the pressure head at that point [equation (9.2)], and that is not available.
Instead, let us calculate the total heads at points A and B and the hydraulic gradient
iA-B. Knowing that iA-B = iA-C, we can calculate hC with the help of (9.4).

To simplify the solution we will assume the height of the water in the upper
reservoir to be X (above point A), as shown in Figure 9.4. Also, we assume the
height of the water in the lower reservoir to be Y (above point B) as shown in the
same figure. At point A,

hp = X

he = 1.5 m − X

hA = hp + he = X + 1.5 m − X = 1.5 m

At point B,

hp = Y

he = −Y

hB = hp + he = Y − Y = 0 m

From (9.4) we have

iA-B = hA − hB

LA-B
= 1.5 m − 0 m

0.5 m
= 3

but iA-B = iA-C; therefore,

iA-C = hA − hC

LA-C
= 1.5 m − hC

0.2 m
= 3 → hC = 0.9 m

Example 9.2 Consider the one-dimensional flow condition shown in Figure 9.5.
Determine the hydraulic gradient between points A and B and the flow direction
knowing that the pore pressures at points A and B are 2.943 and 11.772 kPa,
respectively. With respect to the datum shown in the figure, the elevation heads of
points A and B are 0.5 and 0.2 m, respectively.

SOLUTION: Given uA = 2.943 kPa, uB = 11.772 kPa, ZA = 0.5 m, and ZB =
0.2 m. The water will flow from A to B only if hA is greater than hB. Applying
(9.2) to point A yields

hA = hp + he = uA

γw

+ zA = 2.943 kPa

9.81 kN/m3
+ 0.5 m = 0.8 m
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Soil

B

∆h

(hp)A

ZB = 0.2 m

uA = 2.943 kPa

uB = 11.772 kPa

LB−A = 1.2 m

FIGURE 9.5 One-dimensional seepage.

At point B,

hB = hp + he = uB

γw

+ zB = 11.772 kPa

9.81 kN/m3
+ 0.2 m = 1.4 m

Since hB is greater than hA, the water will flow from B to A (up the slope). The
hydraulic gradient from B to A is

iB-A = hB − hA

LA-B
= 1.4 m − 0.8 m

1.2 m
= 0.5

9.3 DARCY’S LAW

When the flow through soil is laminar, Darcy’s law (Darcy, 1856) applies:

v = ki (9.5)

In this equation the flow velocity (v) is proportional to the hydraulic gradient
(i). The parameter k is the coefficient of permeability. Since i is dimensionless,
k must have velocity units. In geotechnical engineering k is commonly given in
cm/s or m/s. The coefficient of permeability is strongly affected by the density of
packing of the soil particles, which can be expressed simply using void ratio e or
porosity n. In coarse-grained soils, the effective grain size D10 is well correlated
with permeability. For uniform sands with Cu < 5 and a D10 value of 0.1 to 3 mm,
k is calculated using Hazen’s equation (Hazen, 1892):

k(cm/s) = D2
10(mm) (9.6)
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For laminar flow in saturated coarse-grained soils, the Kozeny–Carman equation
(Kozemy, 1927 and Carmen, 1956) can be used to estimate k:

k = 1

k0kT S2
s

e3

1 + e

γw

η
= C

e3

1 + e
(9.7)

where k0 and kT are factors depending on the shape and tortuosity of the pores,
respectively; Ss is the surface area of the solid particles per unit volume of solid
material; and γw and η are the unit weight and viscosity of the pore water.

The Kozeny–Carman equation (9.7) is not well suited for silts and clays. The
following equation (Taylor, 1948) can be used for clays:

log k = log k0 − e0 − e

Ck

(9.8)

where Ck is the permeability change index (for natural clays use Ck ≈ e0/2, where
e0 is the in situ void ratio) and k0 is the in situ permeability (at e = e0). Typical
permeability values for common soil types are: 100 to 1 cm/s for clean gravel, 1 to
0.01 cm/s for coarse sand, 0.01 to 0.001 cm/s for fine sand, 0.001 to 0.00001 cm/s
for silty clay, and less than 0.000001 cm/s for clay.

9.4 LABORATORY DETERMINATION OF PERMEABILITY

The coefficient of permeability of a coarse-grained soil can be determined in the
laboratory using a constant-head permeability test. The test includes a cylindrical
soil specimen that is subjected to a constant head as shown in Figure 9.6. The length
of the soil specimen is L and its cross-sectional area is A. The total head loss (hL)
along the soil specimen is equal to the constant head, which is the difference in
elevation between the water levels in the upper and lower reservoirs as shown in
the figure. A constant head implies that we have reached a steady-state condition
in which the flow rate is constant (i.e., does not vary with time). Using a graduated
flask, we can collect a volume of water (Q) in a period of time (t). From this we
can calculate the flow rate q(= Q/t).

The flow velocity is given by v = q/A, and the hydraulic gradient along the
soil specimen is i = hL/L. Applying Darcy’s law, we can write

v = ki → q

A
= Q

tA
= k

hL

L

Therefore,

k = QL

hLAt
(9.9)
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FIGURE 9.6 Constant-head permeability test.

The constant-head permeability test cannot be used for fine-grained soils because
of their low permeabilities; it will take a long time to collect a measurable quantity
of water to calculate the flow rate. The falling-head laboratory test is used instead.
A schematic diagram of the falling-head permeability test is shown in Figure 9.7.
The length of the cylindrical soil specimen is L and its cross-sectional area is A.
The inside cross-sectional area of the standpipe is a. The elapsed time t needed
for the height of the water column inside the standpipe to drop from h1 to h2 is
recorded.

Using Darcy’s law and equating the flow rate in the standpipe and the soil
specimen, it can be shown that

k = aL

At
ln

h1

h2
(9.10)

For more representative values, the coefficient of permeability can be measured
in the field using pump-in or pump-out tests on a well. In these tests, the flow
rate required to maintain the water table at a constant height is measured and the
coefficient of permeability is calculated using simple analytical expressions (see,
e.g., Das, 2004).
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FIGURE 9.7 Falling-head permeability test.

9.5 PERMEABILITY OF STRATIFIED SOILS

Consider a stratified soil having horizontal layers of thickness H1, H2, H3, . . . , Hn

with coefficients of permeability k1, k2, k3, . . . , kn, as shown in Figure 9.8a. For
flow perpendicular to soil stratification, as shown in the figure, the flow rate q

through area A of each layer is the same. Therefore, the head loss across the n

layers is given as

hL = H1q

k1A
+ H2q

k2A
+ H3q

k3A
+ · · · + Hnq

knA
=

(
H1

k1
+ H2

k2
+ H3

k3
+ · · · + Hn

kn

)
q

A

(9.11)
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FIGURE 9.8 Flow perpendicular to soil stratification.

Figure 9.8b shows an “equivalent” soil layer that can replace the stratified system
shown in Figure 9.8a. The thickness of the equivalent soil layer is H(= H1 +
H2 + H3 + · · · + Hn) and its permeability is keq. For this equivalent system, using
Darcy’s law we can write

hL = qH

Akeq
(9.12)

Equating (9.11) with (9.12), we obtain the equivalent, or average, coefficient of
permeability keq:

keq = H

H1/k1 + H2/k2 + H3/k3 + · · · + Hn/kn

(9.13)

For a flow that is parallel to soil stratification, such as the one shown in Figure 9.9,
the head loss hL over the same flow path length L will be the same for each
layer. Thus, i1 = i2 = i3 = · · · = in. The flow rate through a layered system (with
width = 1 unit) is

q = k1i1H1 × 1 + k2i2H2 × 1 + k3i3H3 × 1 + · · · + kninHn × 1

= (k1H1 + k2H2 + k3H3 + · · · + knHn)i (9.14)

For the equivalent system shown in Figure 9.9b, we have

q = keqHi (9.15)
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FIGURE 9.9 Flow parallel to soil stratification.

Equating (9.14) with (9.15), we obtain the equivalent, or average, coefficient of
permeability keq:

keq = k1H1 + k2H2 + k3H3 + · · · + knHn

H
(9.16)

9.6 SEEPAGE VELOCITY

Consider a flow through a soil specimen with a cross-sectional area A normal to
the direction of flow (Figure 9.10). Flow velocity can be calculated using Darcy’s
law (9.5), which relates flow velocity to the hydraulic gradient. The flow rate q

through the cross-sectional area A is calculated as the product of flow velocity v

and total cross-sectional area of the soil specimen:

q = vA (9.17)

In reality, water flows through a cross-sectional area Av (area of voids) that is
smaller than the total area A. Recall that water follows a tortuous path through the
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v

A = total area

Av = area of voids

FIGURE 9.10 Seepage velocity.

pores. The seepage velocity vs is the average velocity of the water flowing through
the pores. It can be estimated by dividing the flow rate q by the average area of
voids Av on a cross section normal to the direction of flow:

vs = q

Av

(9.18)

Soil porosity n is related to the volume of voids:

n = Vv

V
= Av

A
(9.19)

where Vv is the volume of voids and V is the total volume of a soil specimen.
Substituting (9.19) into (9.18), we have

vs = v

n
(9.20)

9.7 STRESSES IN SOILS DUE TO FLOW

The effective stress depends on the “flow” condition that may occur in a soil
specimen. Three possible conditions for the same soil specimen are shown in
Figure 9.11. Let’s consider the case of a homogeneous soil layer in a container
as shown in Figure 9.11a. The thickness of the soil layer is H2. Above the soil
there is a layer of water H1 thick. There is another reservoir that can be used to
create an upward flow (upward seepage) through the soil sample. We assume that
the valve leading to the upper reservoir is closed, so no water is flowing through
the soil sample. This is the no-flow condition.

Upward seepage can be induced by opening the valve leading to the upper
reservoir as shown in Figure 9.11b. The upper reservoir causes the water to flow
upward through the soil sample. This steady-state upward flow occurs in the field as
a result of artesian pressure when a less permeable layer is underlain by a permeable
layer connected through the ground to a water source providing pressures higher
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FIGURE 9.11 Effective stress distribution: (a) no-flow condition; (b) upward-seepage
condition; (c) downward-seepage condition.

than local hydrostatic pressures. Downward seepage can be induced by lowering
the upper reservoir as shown in Figure 9.11c. This steady-state downward flow
occurs in the field when water is pumped at a constant rate from an underground
aquifer. Pore pressures are then lower than hydrostatic pressures.
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FIGURE 9.11 (continued )

In reference to Figure 9.11, the soil specimen has the same total vertical stress in
the three conditions. The total vertical stresses, pore water pressures, and effective
stresses at depth z are:

No-flow condition:

σv = γwH1 + γsatz, u = γw(H1 + z), σ′
v = γ′z

Upward-flow condition:

σv = γwH1 + γsatz, u = γw(H1 + z) + izγw, σ′
v = γ′z − izγw

Downward-flow condition:

σv = γwH1 + γsatz, u = γw(H1 + z) − izγw, σ′
v = γ′z + izγw

In the upward-flow condition the pore water pressure increases and the effective
stress decreases with depth. On the other hand, when the flow is downward, the
pore water pressure decreases and the effective stress increases. In reference to
Figure 9.11b (upward-flow condition), if the hydraulic gradient induced by the
head difference is large enough (i = icr), the upward seepage force will cause the
effective stress within the soil to become zero, thus causing a sudden loss of soil
strength in accordance with the effective stress principle. This condition resembles
that of the exit soil element on the downstream side of the sheet pile, as discussed
in Example 9.4. If the hydraulic gradient in the exit element is large (iexit = icr),
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the exit element becomes unstable—the upward seepage force is large enough to
cause the exit element to “float.”

The soil specimen in Figure 9.11b will be totally destabilized when the effective
stress within the soil specimen becomes zero. We can obtain this condition if we
set the effective stress at the bottom of the soil layer equal to zero:

H2γ
′ − hγw = 0 (9.21)

or

h

H2
= γ′

γw

(9.22)

The hydraulic gradient through the soil specimen is given by

i = icr = h

H2
(9.23)

where the hydraulic gradient i is equal to the “critical” hydraulic gradient icr

because it causes the soil specimen to be destabilized. Substituting (9.22) into
(9.23) yields

icr = γ′

γw

(9.24)

It can be shown (from the phase diagram) that

icr = γ′

γw

= Gs − 1

1 + e
(9.25)

9.8 SEEPAGE

Two-dimensional steady-state flow of the incompressible pore fluid is governed by
Laplace’s equation, which can be derived based on Darcy’s law and the concept
of flow continuity. Let us consider the two-dimensional flow problem shown in
Figure 9.12 involving a row of sheet piles embedded into a permeable soil. The
sheet pile is impermeable and its role is to separate the high water level (upstream)
from the lower level (downstream). Water will migrate through the porous soil
from the high-energy zone to the low-energy zone around the embedded sheet pile.
We assume that flow occurs only in the x–z plane, an acceptable assumption if the
row of sheet piles is very long in the y-direction. No flow occurs in the y-direction.

For the rectangular soil element with dimensions dx, dz, and unit thickness
(Figure 9.12), the rate of flow into the element in the x-direction is given as

(dqx)in = vx dz × 1
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FIGURE 9.12 Two-dimensional steady-state flow of an incompressible pore fluid.

The rate of flow out of the element in the x-direction is

(dqx)out =
(

vx + ∂vx

∂x
dx

)
dz × 1

Similar expressions can be written for the z-direction:

(dqz)in = vz dx × 1

(dqz)out =
(

vz + ∂vz

∂z
dz

)
dx × 1

A balance of flow requires that

(dqx)out + (dqz)out = (dqx)in + (dqz)in

Therefore, (
vx + ∂vx

∂x
dx

)
dz +

(
vz + ∂vz

∂z
dz

)
dx = vx dz + vz dx

or

∂vx

∂x
+ ∂vz

∂z
= 0 (9.26)

Using Darcy’s law and assuming an isotropic condition in which k = kx = ky , we
can write

vx = kxix = k
∂h

∂x
(9.27)
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and
vz = kziz = k

∂h

∂z
(9.28)

Substituting (9.27) and (9.28) into (9.26), we obtain Laplace’s equation for isotropic
flow conditions:

∂2h

∂x2
+ ∂2h

∂z2
= 0 (9.29)

In three dimensions, Laplace’s equation becomes

∂2h

∂x2
+ ∂2h

∂y2
+ ∂2h

∂z2
= 0 (9.30)

Two-dimensional steady flow of the incompressible pore fluid is governed by
Laplace’s equation (9.29), which indicates that any inequity in flow into and out
of a soil element in the x-direction must be compensated by a corresponding
opposite inequity in the z-direction. Laplace’s equation can be solved analytically,
graphically, or numerically. We will present the analytical solution of Laplace’s
equation for a simple one-dimensional boundary value flow problem. The example
shows how analytical solution of the one-dimensional Laplace’s equation satisfies
the boundary conditions. Unfortunately, the analytical solution for two-dimensional
problems is extremely tedious because of the complexity of the boundary condi-
tions involved. In this case, use of the graphical or numerical solution is more
practical.

Example 9.3 A 0.5-m-long soil specimen is subjected to steady-state flow under
a constant head = 1.5 m as shown in Figure 9.4 (same as Example 9.1). Using
Laplace’s equation, calculate the total head at point C.

SOLUTION: Let us adopt the one-dimensional coordinate system shown in
Figure 9.4. Laplace’s equation for this one-dimensional flow condition becomes

∂2h

∂z2
= 0

The solution of this equation is of the form h = A1z + A2, where A1 and A2 are
constants to be determined from the boundary conditions of the flow domain:

• At the top of the soil specimen (point A), we have z = 0 and h = 1.5 m (see
Example 9.1) considering the datum being located at downstream; therefore,
1.5 m = A1(0) + A2, or A2 = 1.5 m.

• At the bottom of the soil specimen (point B), z = 0.5 m and h = 0; therefore,
0 = A1 (0.5 m) + 1.5 m, or A1 = −3 (dimensionless).

Substituting A1 and A2 into the solution of Laplace’s equation, we get h =
−3z + 1.5 m. Finally, at point C we have z = 0.2 m → h = −3(0.2 m) + 1.5 m =
0.9 m.
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9.9 GRAPHICAL SOLUTION: FLOW NETS

The graphical solution to Laplace’s equation for two-dimensional seepage problems
is presented by a flow net consisting of two families of lines: equipotential lines
and flow lines. These two sets of lines are orthogonal and must form quadrilateral
flow elements (curvilinear squares) as shown in Figure 9.13a. An equipotential line
connects points of equal total head h (potential), and a flow line represents the path
traveled by a drop of water, indicating the direction of seepage down a hydraulic
gradient.

b
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(b)
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Sand

Flow
Channel

hL

(a)

Flow
Channel

Flow

Flow
LineEquipotential
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Channel

x

z

H1
H2

Datum

FIGURE 9.13 Graphical solution of Laplace’s equation: (a) flow net; (b) flow element.
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If we position the tips of several standpipes (piezometers) along a single equipo-
tential line, the water would rise to the same level in each standpipe. This means
that the total head is the same along an equipotential line since the total head is the
sum of the pressure head (height of water in a standpipe) and the elevation head
measured from an assumed datum, as shown in Figure 9.13a. There is a potential
change (decrease) between two consecutive equipotential lines (Figure 9.13b). This
is called the potential drop �h and is calculated as

�h = hL

Nd

(9.31)

where hL is the total head loss (hL = H1 − H2) and Nd is the number of potential
drops. Knowing that there is a potential drop between any two equipotential lines,
it follows that Nd is equal to the total number of equipotential lines minus 1. Also,
there is a flow channel between two consecutive flow lines. Thus, the number of
flow channels Nf is equal to the total number of flow lines minus 1.

9.9.1 Calculation of Flow

Consider the flow element shown in Figure 9.13b. This flow element is bounded
by two flow lines and two equipotential lines. Let us assume that the width of the
flow element is b (the distance between the two flow lines) and the length of the
element is L. As the pore-water traverses along the flow channel a distance L it
encounters a potential drop �h. Therefore, the average hydraulic gradient along
the element is i = �h/L.

Using Darcy’s law we can calculate the flow rate within a flow channel assuming
that the width of the channel is 1 unit of length in the y-direction:

�q = kb
�h

L
(9.32)

Substituting (9.31) into (9.32) yields

�q = kb
hL

LNd

(9.33)

It is preferred when sketching flow nets to use curvilinear square elements with
L ≈ b. If all flow elements in a flow channel are curvilinear squares, then (9.33)
becomes

�q = k
hL

Nd

(9.34)

The total flow rate for a flow net with Nf flow channels is given as

q = Nf �q = khL

Nf

Nd

(9.35)
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9.9.2 Flow Net Construction

A two-dimensional cross section of the seepage problem should be sketched to
scale in both the x and z directions. Figure 9.14a shows a sheet pile embedded
in a 19-m-thick sand layer underlain by a virtually impermeable clay layer. The
embedment length of the sheet pile is 8 m. The problem is drawn to scale, keeping
in mind that the graphical solution is only relevant to the flow domain, which
includes the 19-m-thick sand layer and the embedded part of the sheet pile. The
water on both sides of the sheet pile is used to establish the boundary conditions
at the top surface of the sand layer, as explained next. The bottom surface of the
sand layer has an impermeable boundary condition.

We would start drawing a flow net for a particular two-dimensional seepage
problem by establishing the first and last flow lines, which usually correspond

Sheet Pile

Sand

h1 h7
Datum1 m

7 m

Clay

F1

H1

H2

F4

11 m

8 m

(a)

Sand

h7 = 0 mh1 = 6 m

h2 = 5 m h6 = 1 m

h3 = 4 m h5 = 2 m

h4 = 3 m

(b)

13 m

A

L
≈ 

4.
5 

m

Exit Element

Nf = 3

Nd = 6

F4

F3

F2 F1

x

z

FIGURE 9.14 Flow net construction: (a) boundaries of flow domain; (b) flow net.
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to impermeable boundary conditions. Then we draw a few “parallel” flow lines
between the first and last lines. Note that a surface across which there is no
flow (e.g., an impermeable soil layer or an impermeable wall) is a flow line. In
Figure 9.14a the perimeter of the sheet pile [line F1 (F for “flow”)] is a flow line,
and the bottom impermeable boundary of the sand layer (line F4) is also a flow
line. Let’s consider line F1 as the first flow line and line F4 as the last flow line. In
between these two lines, we can draw two flow lines marked F2 and F3, as shown
in Figure 9.14b.

Next, we would establish the first and last equipotential lines, which usually
correspond to permeable boundary conditions. Then we draw a few “parallel” lines
in between. Note that a surface on which the total head is constant (e.g., from the
level of a river) is an equipotential line. In Figure 9.14a, line h1 (h for “total head”),
is the first equipotential line having h = 6 m, and line h7 is the last equipotential
line with h = 0 m, assuming the datum to be coincident with the downstream water
level as shown in the figure. Between lines h1 and h7 let’s draw a few equipotential
lines: h2, h3, h4, h5, and h6, as shown in Figure 9.14b.

While drawing the flow lines and the equipotential lines, we need to remember
two rules: (1) the flow lines are always orthogonal to the equipotential lines, and
(2) all resulting flow elements need to be curvilinear squares. The way you judge a
flow element to be a curvilinear square is by inscribing a circle inside the element
that touches the four curved sides at the same time. Note that drawing a flow net is
a trial-and-error process in which we do not know beforehand how many flow lines
and equipotential lines are required to establish a correct flow net. So you will need
to use a pencil and make frequent use of the eraser! If you are able successfully to
establish two families of lines (flow net) that obey the aforementioned two rules,
your flow net will represent the graphical solution of Laplace’s equation, (9.29).

Example 9.4 Figure 9.14 shows a sheet pile embedded in a 19-m-thick sand layer
underlain by a virtually impermeable clay layer. The embedment length of the sheet
pile is 8 m. The figure also shows the flow net associated with this seepage problem.
(a) Calculate the flow rate through the sand layer per unit length (in the y-direction)
knowing that the coefficient of permeability of the sand layer is k = 10−3 m/s. (b)
Calculate the pore water pressure at point A. (c) Calculate the hydraulic gradient
of the exit element and its safety factor against heaving. The saturated unit weight
of the sand is γsat = 19 kN/m3.

SOLUTION:

(a) The total head loss is hL = H1 − H2 = 7 m − 1 m = 6 m. From the flow
net shown in Figure 9.14b we have Nf = 3 and Nd = 6. The flow rate per
unit length can be calculated using (9.35):

q = khL

Nf

Nd

= 10−3 m/s(6m)

(
3

6

)
= 3 × 10−3 m3/s per meter
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(b) Let us calculate the total head associated with the equipotential lines in
Figure 9.14b. The first equipotential line has a total head of h1 = hL = 6 m,
with the datum located as shown in the figure. The number of potential drops
is Nd = 6; therefore, the potential drop between two adjacent equipotential
lines is �h = hL/Nd = (6 m)/6 = 1 m. Now we can calculate the total
head in subsequent equipotential lines as follows:

h1 = hL = 6m

h2 = hL − 1 × �h = 6m − 1 × 1m = 5m

h3 = hL − 2 × �h = 6m − 2 × 1m = 4m

h4 = hL − 3 × �h = 6m − 3 × 1m = 3m

h5 = hL − 4 × �h = 6m − 4 × 1m = 2m

h6 = hL − 5 × �h = 6m − 5 × 1m = 1m

h7 = hL − 6 × �h = 6m − 6 × 1m = 0m

Point A is located on the third equipotential line, which has a total head of
4 m. According to Bernoulli’s equation, (9.2), the total head at any point is
the sum of the pressure head and the elevation head: h = hp + he = u/γw +
z. The elevation head at point A is −14 m because point A is below the
assumed datum. So hp = u/γw = h − he = 4m − (−14m) = 18m. There-
fore, the pore pressure at point A is u = (18 m)γw = (18m)(9.81kN/m3) =
177 kPa.

(c) The exit element on the downstream side of the sheet pile is shown in
Figure 9.14b. The flow net indicates that the exit element is subject to a
total head loss of 1 m (= h6 − h7). As the pore water flows from the bottom
of the exit element toward the top, a distance L of approximately 4.5 m, it
encounters a head loss of 1 m. Therefore, the exit hydraulic gradient can be
calculated as

iexit = h6 − h7

L
= �h

L

Let us define the safety factor against heaving as

FS = icr

iexit

in which icr = γ′/γw (9.24). When this safety factor is 1, the exit hydraulic
gradient is equal to the critical hydraulic gradient, and the exit element is
in the state of incipient failure. To prevent that, this safety factor should be
equal to or greater than 1.5.
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Is the exit element in Figure 9.14b safe? To answer that, we need to calculate
its safety factor as follows:

FS = icr

iexit
= γ′/γw

�h/L
= γ′

γw

L

�h

Using γsat = 19 kN/m3, L = 4.5 m, and �h = 1 m in the equation above,
we get

FS =
(

19 − 9.81

9.81

) (
4.5

1

)
= 4.2 > 1.5

and the exit element is safe.

9.10 FLOW NETS FOR ANISOTROPIC SOILS

Many natural sedimentary soils are anisotropic with respect to permeability; their
horizontal permeabilities are significantly greater than their vertical permeabilities.
Let us consider an anisotropic soil with permeability kx and kz in the x and z

directions, respectively. The equation governing seepage in such a soil is given as

kx

∂2h

∂x2
+ kz

∂2h

∂z2
= 0 (9.36)

This elliptic equation (not Laplace’s equation) can be simplified by applying the
following transformation on the x-dimension:

xT = x

√
kz

kx

Substituting the equation above into (9.36), we get

∂2h

∂x2
T

+ ∂2h

∂z2
= 0

The equation above has the same form as Laplace’s equation for isotropic flow
conditions, (9.29). This means that for an anisotropic flow condition we can sketch
a flow net using the same procedure for isotropic flow as described earlier provided
that the structure and the flow domain are stretched in the x-direction by multiplying
their x-dimension by

√
kz/kx . Calculations of flow are done using an equivalent

permeability kT = √
kxkz; thus,

q =
√

kxkzhL

Nf

Nd

(9.37)
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9.11 FLOW THROUGH EMBANKMENTS

Earth dams are constructed of well-compacted soils. A homogeneous earth dam
consists of one type of soil but may contain a drainage blanket to collect seeping
water. A zoned earth dam has several zones made of different materials, typically
a locally available shell with a watertight clay core. Water seeps through the body
of an earth dam and through its foundation. The velocity and quantity of seepage,
especially through the earth dam, need to be controlled. If left uncontrolled, it
can slowly erode soil from the body of the dam or its foundation, resulting in
catastrophic failure of the dam. Erosion of the soil starts at the downstream side of
the dam and advances progressively toward the reservoir, creating a direct “tunnel”
to the reservoir. This phenomenon is known as piping.

In Section 9.8 we discussed how to estimate seepage under hydraulic structures
using flow nets. In this section we learn how to estimate seepage through an earth
dam (or embankment dam). Seepage through an earth dam presents an additional
difficulty in that it is an unconfined flow problem where the flow domain is bounded
at the top by a phreatic surface which represents the top flow line (Figure 9.15a).
The pressure head along the phreatic surface is zero because the soil above it is
assumed to be dry. Because the pressure head along the phreatic surface is zero,
it follows that the total head changes and elevation head changes are equal. Thus,
for equal total head intervals �h between equipotential lines, there will be equal
vertical distances between the points of intersection of equipotential lines with the
phreatic surface as shown in Figure 9.15b.

Phreatic Surface

Earth Dam

Impermeable Base

(a)

Equipotential Lines

Impermeable Base

(b)

∆z = ∆h
∆z = ∆h
∆z = ∆h
∆z = ∆h
∆z = ∆h
∆z = ∆h
∆z = ∆h

FIGURE 9.15 Flow through embankment: (a) phreatic surface; (b) characteristics of the
phreatic surface.
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FIGURE 9.16 Construction of a phreatic surface in a homogeneous earth dam.

To calculate the flow rate through the dam and to sketch the flow net, we need to
determine the shape of the phreatic surface for a particular embankment dam. As in
any seepage problem, the flow net is very useful, especially for calculating the exit
hydraulic gradient and the exit safety factor against piping. Figure 9.16 presents
a homogeneous earth dam with an impervious foundation soil. The permeability
of the dam is k (isotropic). The phreatic surface of this simple flow condition is
assumed to be a parabolic surface (A′BC) with its focus at point D. The phreatic
surface is slightly adjusted at the entrance (upstream) to start at point A instead of
point A′. At the exit, the length L is calculated as

L = d

cos α
−

√
d2

cos2 α
− H 2

sin2 α
(9.38)

where H is the height of the water in the reservoir, α the slope of the downstream
face of the embankment dam, and the distance d, defined in Figure 9.16, can be
calculated based on the geometry of the embankment dam (Schaffernak, 1917).
The flow rate through the dam is given by

q = k
sin2 α

cos α
L = k

sin2 α

cos α


 d

cos α
−

√
d2

cos2 α
− H 2

sin2 α


 (9.39)

9.12 FINITE ELEMENT SOLUTION

Let us consider the general case of anisotropic soil with permeability kx and kz in
the x and z directions, respectively. Equation 9.36 governs seepage in such a soil:

kx

∂2h

∂x2
+ kz

∂2h

∂z2
= 0
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Developing a closed-form solution of 9.36 can be a very difficult task because the
boundary conditions are difficult to satisfy even in the simplest two-dimensional
flow problems. But with the finite element method, an approximate solution can
be obtained in a simple manner. Without getting into much detail, it can be shown
that discretization of (9.36) gives the following global equation that is applicable
to both confined and unconfined flow problems:

[K]{H } = {Q} (9.40)

where [K] is the global stiffness matrix, {H } a vector containing the nodal total
heads (unknowns), and {Q} a vector containing nodal flow. Note that each node
has only one degree of freedom, which is the total head.

The global stiffness matrix [K] is an assembly of the element stiffness matrices
of the entire flow domain. The element stiffness matrix is given as

[K]e =
∫

ve

[B]T[P ][B] dv (9.41)

where [B] is derived from the shape function [N ], the matrix [B]T is the transpose
of the matrix [B], and [P ] is the element permeability matrix, defined as

[P ] =
[

kx 0
0 kz

]
(9.42)

The numerical solution of (9.36) depends largely on the boundary conditions of a
particular flow problem.

Boundary Conditions for Confined Flow For confined flow problems such
as the one shown in Figure 9.17, the boundary conditions are as follows:

• Line AB is an equipotential line; therefore, all the nodal points along this line
have a constant total head H = H1 + Z1 assuming the datum is located at the
bottom of the flow domain as shown in the figure. We are using the symbol
H for the total head, to be consistent with (9.40).

Datum

H1

Z1 Z2

H2

Permeable Soil

Impermeable Soil

Concrete Dam

A B C D

E F

FIGURE 9.17 Boundary conditions for confined flow.
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A Drainage Blanket

H1 − Z1

Z1

H1

Datum

FIGURE 9.18 Boundary conditions for unconfined flow.

• Line CD is also an equipotential line having a total head H = H2 + Z2.
• Lines BC and EF represent impermeable boundaries along which ∂H/∂z = 0.

Boundary Conditions for Unconfined Flow For unconfined flow problems,
such as the problem of flow through an embankment dam shown in Figure 9.18,
the boundary conditions are as follows:

• Line AB is an equipotential line with a constant total head H = H1, consid-
ering that the datum is located at the interface between the embankment dam
and the impermeable foundation soil.

• Line BC is the phreatic surface along which the pressure head is zero, which
means that the total head is equal to the elevation head along this surface.
Thus, the boundary condition along line BC is H = Z.

• Line AC represents impermeable boundary along which ∂H/∂z = 0.

Example 9.5 : Sheet Pile Embedded in Isotropic Soil Figure 9.19a shows a row
of sheet piles embedded in a 9.2-m-thick isotropic silty sand layer (kx = kz =
5 × 10−5 m/s) underlain by an impermeable clay layer. The sheet pile is assumed
to be of infinite length in the y-direction. The embedment length of the sheet pile
is 4.6 m. (a) Construct the flow net associated with this seepage problem using the
finite element method. (b) Calculate the flow rate through the silty sand layer per
unit length (in the y-direction).

SOLUTION: (files: Chapter 9 Example5 equipotential.cae, Chapter 9 Example5
flowlines.cae) The finite element discretization of the flow domain is shown in
Figure 9.19b. The 3-m-deep water on top of the soil on the upstream side is replaced
by a pore water pressure boundary condition with u = 30 kPa, as shown in the
figure. The pore water pressure along the soil surface on the downstream side is
set equal to zero. The two vertical sides and the bottom side of the flow domain
are impermeable. There is no need to specify these boundaries as impermeable
boundary conditions since the pore fluid flow formulation does not allow a flow
of fluid across the surface of the domain. Instead of modeling the sheet pile with
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Datum
3 m

4.6 m

4.6 m

27 m 27 m

Impermeable Layer

k = 5 × 10−5 m/s

u = 30 kPa u = 0 kPa

(a)

Impermeable Boundary

u = 30 kPa u = 0 kPa

(b)

u = 30 kPa u = 0 kPa

(c)

FIGURE 9.19 Sheet pile embedded in isotropic soil: (a) problem configuration; (b) finite
element discretization; (c) flow net.

structural elements, a narrow V-shaped gap is created. The surfaces of the gap are
regarded as external surfaces of the flow domain therefore they are impermeable.

In this example (and all the following examples) we consider fluid flow
only; deformation of the soil is ignored. A plane-strain coupled pore fluid
flow–deformation element is used in the current analysis. This type of element
is generally used to calculate stresses and deformations associated with seepage
forces. Nonetheless, in the present analysis we constrain all displacement degrees
of freedom since we are only interested in establishing the flow net.

(a) Isotropic permeability of the soil is used with k = 5 × 10−5 m/s. The weight
of the water is applied by gravity loading. A steady-state analysis is performed to
obtain the equipotential lines shown in Figure 9.19c. To obtain the flow lines, the
boundary conditions of the flow domain are altered as follows: The top surface
of the soil on both sides of the sheet pile is made impermeable. To invoke flow,
the embedded surface of the sheet pile is assigned a constant pore pressure u = 0,
while the bottom boundary of the flow domain is assigned a higher pore pressure,
u = 30 kPa. The resulting pore water pressure contours are the flow lines. The
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flow lines are placed over the equipotential lines to form the flow net shown in
Figure 9.19c.

(b) In reference to Figure 9.19a, let’s consider the datum to be at the top surface
of the downstream soil. The total head at the top surface of the downstream soil
is h = 0, while the total head at the top surface of the upstream soil is h = 3 m.
Thus, the total head loss is hL = 3 m. From Figure 9.19c we have Nf = 3 and
Nd = 6. The flow rate is calculated as

q = khL

Nf

Nd

= 5×10−5 m/s(3m)

(
3

6

)
= 7.5×10−5 m3/s per meter

= 6.48 m3/day per meter

Example 9.6 : Sheet Pile Embedded in Anisotropic Soil Figure 9.20a shows a
sheet pile embedded in a 9.2-m-thick anisotropic silty sand layer (kx = 15 ×
10−5 m/s and kz = 5 × 10−5 m/s) underlain by an impermeable clay layer. The
embedded length of the sheet pile is 4.6 m. Construct the flow net associated with
this seepage problem using the finite element method.

SOLUTION: (files: Chapter9 Example6 equipotential.cae, Chapter9 Example6
flowlines.cae) Hand-drawing of anisotropic flow nets is possible following the
procedure discussed in Section 9.10. The procedure can be tedious, especially for
relatively complicated geometries. In this example we use the finite element method

(a)

Datum
3 m

4.6 m

4.6 m

27 m 27 m

Impermeable Layer

kx = 15 × 10−5 m/s
kz = 5 × 10−5 m/s

u = 30 kPa u = 0 kPa

(b)

Impermeable Layer

u = 30 kPa u = 0 kPa

FIGURE 9.20 Sheet pile embedded in anisotropic soil: (a) problem configuration; (b) flow
net.
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to construct a flow net for anisotropic flow domain. The finite element procedure
to solve this problem is identical to that of Example 9.5. The only exception is that
we use the orthotropic soil permeability option herein with kx = 15 × 10−5 m/s
and kz = 5 × 10−5 m/s. The flow net is constructed in the same manner as in
Example 9.5. Figure 9.20b shows the resulting anisotropic flow net.

Let’s consider the datum to be at the top surface of the downstream soil
(Figure 9.20a). The total head at the top surface of the downstream soil is h = 0,
and the total head at the top surface of the upstream soil is h = 3 m; therefore, the
total head loss is hL = 3 m. From Figure 9.20b we have Nf = 3 and Nd = 6. The
flow rate for this anisotropic flow condition is calculated as

q =
√

kxkzhL

Nf

Nd

=
√

(15×10−5)(5×10−5)m/s(3m)

(
3

6

)

= 1.3×10−4 m3/s per meter

= 11.22 m3/day per meter

Example 9.7 : Asymmetric Sheet Pile Problem Two parallel rows of sheet piles
are embedded in an isotropic silty sand layer underlain by an impermeable layer
as shown in Figure 9.21a. The silty sand layer has a nonuniform thickness, and
the embedded lengths of the two sheet piles are different, as indicated in the
figure. Using the finite element method, construct a flow net for the flow domain
and calculate the flow rate, per unit length, of the water seeping into the trench
between the two rows. The sheet piles are assumed to be of infinite length in the
y-direction.

SOLUTION: (files: Chapter9 Example7 equipotential.cae, Chapter9 Example7
flowlines.cae) Figure 9.21b presents the finite element mesh used for the anal-
ysis. The 3-m-deep water on top of the soil on both sides of the trench is replaced
by a pore water pressure boundary condition with u = 30 kPa as shown in the
figure. The pore water pressure on the soil surface located at the bottom of the
trench is set equal to zero. The two vertical sides and the bottom side of the flow
domain are impermeable. The sheet piles are simulated using narrow V-shaped
gaps whose surfaces are impermeable.

A plane-strain coupled pore fluid flow-deformation element is used in the cur-
rent analysis. Isotropic permeability of the soil is used with k = 5 × 10−5 m/s. The
weight of the water is applied by gravity loading. A steady-state analysis is per-
formed to obtain the equipotential lines shown in Figure 9.21c. To obtain the flow
lines, the boundary conditions of the flow domain are altered as follows: The top
surfaces of the soil on both sides of the trench are made impermeable, as is the soil
surface located at the bottom of the trench. To invoke flow, the embedded surfaces
of the two sheet piles are assigned a constant pore pressure u = 0, and the bottom
boundary of the flow domain is assigned a higher pore pressure u = 30 kPa. The
resulting pore water pressure contours are the flow lines. The flow lines are placed
over the equipotential lines to form the flow net shown in Figure 9.21c.
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Impermeable Layer
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FIGURE 9.21 Asymmetric sheet pile: (a) problem configuration; (b) finite element dis-
cretization; (c) flow net.

In reference to Figure 9.21c, we note that the flow net is asymmetric. We have
six flow channels on the right-hand side and only four flow channels on the left-
hand side. Assuming the datum to be at the bottom of the trench, the total head at
the top surface of the flow domain would be 6 m. Thus, the total head loss between
the top surface of the flow domain and the bottom surface of the trench is 6 m.
The flow rate is calculated as

q = khL

Nf

Nd

= 5 × 10−7m/s(6m)

(
4 + 6

12

)
= 2.5 × 10−6m3/s per meter

= 0.216 m3/day per meter
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Example 9.8 : Three-Dimensional Sheet Pile Problem Four sheet piles are driven
into a silty sand in a square cofferdam formation to a depth of 6.1 m. The cof-
ferdam is 9.2 m × 9.2 m in plan. Figure 9.22a shows one-fourth of the problem
configuration. The soil is excavated to a depth of 4.6 m as shown in the figure. The
water level outside the cofferdam is 3 m above the ground surface (not shown in the
figure). Inside the cofferdam the water level is kept at the bottom of the excavation
(using a pump). Using the finite element method, construct a three-dimensional
flow net for the flow domain. Note that there is an impermeable soil layer under
the silty sand at a depth of 15.1 m.

SOLUTION: (files: Chapter9 Example8 equipotential.cae, Chapter9 Example8
flowlines.cae) Figure 9.22b presents the three-dimensional finite element mesh
used for the analysis. Note that only one-fourth of the geometry is considered
because of symmetry. The 3-m-deep water on top of the soil outside the cofferdam
is replaced by a pore water pressure boundary condition with u = 30 kPa as shown
in the figure. The pore water pressure on the soil surface located inside the coffer-
dam is set equal to zero. All vertical sides and the bottom side of the flow domain
are impermeable. The sheet piles are simulated using narrow V-shaped gaps whose
surfaces are also impermeable.

A three-dimensional coupled pore fluid flow-deformation element is used in the
current analysis. Isotropic permeability of the soil is used with k = 5 × 10−5 m/s.
The weight of the water is applied by gravity loading. A steady-state analysis is
performed to obtain the equipotential lines (surfaces) shown in Figure 9.22c. To
obtain the flow lines, the boundary conditions of the flow domain are altered as
follows: The top surfaces of the soil outside the cofferdam are made impermeable,
as is the soil surface located at the bottom of the cofferdam. To invoke flow, the
embedded surfaces of the sheet piles are assigned a constant pore pressure u = 0,
and the bottom boundary of the flow domain is assigned a higher pore pressure
u = 30 kPa. The resulting pore water pressure contours are the flow lines (surfaces).
The flow lines are shown in Figure 9.22d.

Example 9.9 : Symmetric Concrete Dam Problem Calculate the flow rate of seep-
age per unit length under the concrete dam shown in Figure 9.23a. The dam is 20 m
high and has a 60-m-wide base. The dam is underlain by a 90-m-thick soil with
k = 0.03 cm/s (isotropic). The water in the reservoir is 12 m high. The concrete
dam is assumed to be very long in the y-direction.

SOLUTION: (files: Chapter9 Example9 equipotential.cae, Chapter9 Example9
flowlines.cae) The finite element mesh of the flow domain is shown in
Figure 9.23b. Note that the mesh is made finer in the vicinity of the dam. The
top surface of the soil on the upstream side of the dam is assigned a pore water
pressure boundary condition with u = 117.7 kPa to account for the pressure caused
by the 12-m-high upstream water. The pore pressure boundary condition on the
top surface of the soil on the downstream side is assigned u = 0. The bottom sur-
face of the concrete dam is an impermeable boundary condition. The vertical sides
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4.6 m

4.6 m4.6 m

10.7 m10.7 m

1.5 m

9 m

Sheet Pile

Impermeable Base

u = 0 kPa

u = 30 kPa

k = 5 × 10−5 m/s

(a)

Sheet Pile

Impermeable Base

u = 0 kPa

u = 30 kPa

(b)

FIGURE 9.22 Three-dimensional sheet pile problem: (a) configuration; (b) finite element
discretization; (c) equipotentials; (d) flow lines.
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u = 30 kPa

u = 0 kPa

(c)

(d)

FIGURE 9.22 (continued )

and the bottom side of the flow domain are also assigned impermeable boundary
conditions.

The element used in this analysis is a plane-strain coupled pore fluid
flow-deformation element. Soil permeability is assumed to be isotropic with
k = 0.03 cm/s. The equipotential lines shown in Figure 9.23c are obtained by
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k = 0.03 cm/s

12 m

90 m

180 m 180 m60 m

u = 117.7 kPa u = 0 kPa

Impermeable Base

(a)

Impermeable Base

u = 117.7 kPa u = 0 kPa

(b)

(c)

u = 117.7 kPa u = 0 kPa

Impermeable Base

FIGURE 9.23 Symmetric concrete dam: (a) problem configuration; (b) finite element dis-
cretization; (c) flow net.

performing a steady-state analysis. By changing the boundary conditions, we can
obtain the flow lines. This is done by assigning impermeable boundary conditions
to the top surfaces of the soil on both sides of the dam. Also, the bottom surface
of the dam is assigned a constant pore pressure u = 0, while the bottom boundary
of the flow domain is assigned a higher pore pressure u = 117.7 kPa. The flow
lines, shown in Figure 9.23c, are obtained by plotting contour lines of pore pressure
within the flow domain. The flow lines and the equipotential lines are superimposed
to form the flow net shown in Figure 9.23c.

Considering datum to be on the top surface of the soil on the downstream side,
the total head at the top surface of the soil on the downstream side is equal to zero.
The total head at the top surface of the soil on the upstream side is 12 m. Thus,
the total head loss is 12 m. Also, from the flow net shown in Figure 9.23c we have
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Nf = 5 and Nd = 8. The flow rate is calculated as

q = khL

Nf

Nd

= 0.0003m/s(12m)

(
5

8

)
= 2.25 × 10−3 m3/s per meter

= 194.4 m3/day per meter

The calculated flow rate seems too high! This is partially due to the high perme-
ability of the soil. Let’s include a sheet pile at the heel of the concrete dam to see
if we can reduce the flow rate (next example).

Example 9.10 : Asymmetric Concrete Dam Problem Construct a flow net for the
flow domain under the concrete dam shown in Figure 9.24a. The dam is 20 m

Impermeable Base

k = 0.03 cm/s

12 m

75 m

180 m 180 m60 m

u = 117.7 kPa u = 0 kPa
15 m

(a)

(b)

u = 117.7 kPa u = 0 kPa

Impermeable Base

u = 117.7 kPa u = 0 kPa

Impermeable Base

(c)

FIGURE 9.24 Asymmetric concrete dam: (a) problem configuration; (b) finite element
discretization; (c) flow net.
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high and has a 60-m-wide base. The concrete dam includes a row of sheet piles
with an embedded length of 15 m as shown in the figure. The dam is underlain
by a 90-m-thick soil with k = 0.03 cm/s (isotropic). The water in the reservoir is
12 m high.

SOLUTION: (files: Chapter9 Example10 equipotential.cae, Chapter9 Example10
flowlines.cae) The finite element procedure to solve this problem is similar to

that of Example 9.9. The only difference is the presence of the 15-m-long sheet
pile at the heel of the concrete dam. The sheet pile is simulated by a narrow V-
shaped gap, the surfaces of which are regarded as external surfaces of the flow
domain; therefore, they are impermeable. Figure 9.24b presents the finite element
mesh used in the analysis. The resulting flow net is shown in Figure 9.24c. From
the figure we have Nf = 13 and Nd = 24. The flow rate is calculated as

q = khL

Nf

Nd

= 0.0003m/s(12m)

(
13

24

)
= 1.95 × 10−3 m3/s per meter

= 168.5 m3/day per meter

This flow rate is slightly (13%) less than the flow rate of a dam without a sheet
pile (Example 9.9).

Example 9.11 Figure 9.25a shows a long horizontal drain located at 4.5 m below
the ground surface. The drain is 0.6 m in diameter. The 9-m-thick sandy clay layer
has k = 5 × 10−7 m/s and is underlain by an impermeable stratum. (a) Draw the
flow net for the groundwater flow. (b) Calculate the discharge through the drain in
m3/day per meter length of drain when the water level is 3 m above the ground
surface as shown in the figure.

SOLUTION: (files: Chapter9 Example11 equipotential.cae, Chapter9 Example11
flowlines.cae) (a) The finite element discretization of the flow domain is shown

in Figure 9.25b. The 3-m-deep water on top of the soil is replaced by a pore water
pressure boundary condition with u = 30 kPa at the top surface of the flow domain.
The pore water pressure along the perimeter of the drain is set equal to zero. The
two vertical sides and the bottom side of the flow domain are impermeable. The
natural boundary condition in the pore fluid flow formulation provides no flow of
fluid across the surface of the domain, therefore, no further specification is needed
on these surfaces.

The permeability of the soil is 5 × 10−7 m/s. The weight of the water is applied
by gravity loading. A steady-state analysis is performed to obtain the equipotential
lines shown in Figure 9.25c. To obtain the flow lines, the boundary conditions of
the flow domain are altered (reversed) as follows: The top surface ABC and the
perimeter of the drain are made impermeable (Figure 9.25b). To invoke flow, line
BD is assigned a constant pore pressure u = 0, while lines AF, CH, and EG are
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Water

Soil

D = 0.6 m

Drainage Pipe

k = 5 × 10−7 m/s

Impermeable Base

3 m

4.5 m 4.5 m

4.5 m

4.5 m

u = 30 kPa

u = 0 kPa

(a)

Impermeable Base

u = 30 kPa

u = 0

A B

E

D

C

HGF

(b)

FIGURE 9.25 Horizontal drainage pipe: (a) problem configuration; (b) Finite element
mesh; (c) flow net.
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Impermeable Base

u = 30 kPa

u = 0 kPa

(c)

FIGURE 9.25 (continued )

assigned a higher pore pressure u = 30 kPa. The resulting pore pressure contours
are actually the flow lines. These are superimposed to the equipotential lines to
form the flow net shown in Figure 9.25c.

(b) Consider the datum at the drain level. This means that the total head along
the perimeter of the drain is approximately zero. The total head at the top of the
flow domain (the ground surface) is therefore 7.5 m. (Why?) The head loss (hL)
from the surface of the flow domain to the center of the drain is 7.5 m. From the
flow net shown in Figure 9.25c we have Nf = 12 and Nd = 8:

q = khL

Nf

Nd

= 5 × 10−7m/s(7.5m)

(
12

8

)
= 5.625 × 10−6m3/s per meter

= 0.486 m3/day per meter

Example 9.12 Using the finite element method, establish the phreatic surface of
the homogeneous earth dam shown in Figure 9.26a. The dam is 24 m high and it
is filled to one-half of its height. The foundation soil is impermeable. A 9-m-wide
drainage blanket is used to control seepage through the dam.

SOLUTION: (file: Chapter9 Example12 equipotential.cae) This example illus-
trates the use of the finite element method to solve for the flow through a homo-
geneous embankment dam in which fluid flow is occurring in a gravity field and
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Bedrock
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Drainage
BlanketHomogeneous Earth Dam 

k = 0.03 m/s

u = 120 kPa

u = 60 kPa

u = 90 kPa
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u = 0 kPa

u = 0 kPa

(a)

Bedrock

Drainage
Blanket

u = 120 kPa

u = 60 kPa

u = 90 kPa

u = 30 kPa

u = 0 kPa

u = 0 kPa

(b)

Bedrock

Drainage
Blanket

u = 120 kPa

u = 60 kPa

u = 90 kPa

u = 30 kPa

u = 0 kPa

u = 0 kPa

Phreatic Surface

(c)

FIGURE 9.26 Phreatic surface of a homogeneous earth dam: (a) problem configuration;
(b) finite element mesh; (c) calculated phreatic surface.

the location of the phreatic surface is a part of the solution. The phreatic sur-
face in the dam is the locus of points at which the pore fluid pressure, u, is
zero. In this problem we consider fluid flow only; deformation of the dam is
ignored. A fully coupled pore fluid flow-deformation element will be used. This
type of element is generally used to calculate stresses and deformations associated
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with seepage forces. Nonetheless, in the present analysis we constrain all displace-
ment degrees of freedom since we are only interested in establishing the phreatic
surface.

The geometry of this homogeneous earth dam is shown in Figure 9.26a. The
dam is filled to one-half of its height. The earth dam includes a drainage blanket
at its base. Since the dam is assumed to be long, we use coupled pore pres-
sure/displacement plane strain elements. The finite element mesh is shown in
Figure 9.26b. Half of the upstream face of the dam is subject to water pres-
sure as shown in Figure 9.26a. The pore pressure on this face varies with depth:
u = (H1 − Z1)γw, where H1 (= 12 m) is the elevation of the water surface and Z1

is elevation as indicated in Figure 9.18. Part of the bottom of the dam is assumed
to rest on an impermeable foundation. Since the natural boundary condition in the
pore fluid flow formulation provides no flow of fluid across a surface of the model,
no further specification is needed on this surface. The drainage blanket boundary
is assigned zero pore pressure (u = 0).

Again, the phreatic surface in the dam is determined as the locus of points at
which the pore water pressure is zero. Above this surface the pore water pressure
is assumed to be zero in this particular analysis (i.e., the soil above the phreatic
surface is assumed to be dry). In reality, the pore pressure above the phreatic surface
is negative. The capillary tension causes the fluid to rise against the gravitational
force, thus creating a capillary zone. The effect of capillary tension on the location
of the phreatic surface is minimal and can be ignored, as is done in the present
analysis.

The permeability of the fully saturated soil of the dam is 3 × 10−2 m/s. The
initial void ratio of the soil is 1.0. Initially, the embankment dam is assumed to
be saturated with water up to the level of the water in the reservoir. This means
that the initial pore pressure varies between zero at the upstream water level and
a maximum of 120 kPa at the base of the dam. The weight of the water is applied
by gravity loading. A steady-state analysis is performed in five increments to allow
the numerical algorithm to resolve the high degree of nonlinearity in the problem.
The phreatic surface is shown in Figure 9.26c. This phreatic surface is established
by plotting the contour line along which the pore water pressure is zero.

PROBLEMS

9.1 Points A and B are located on the same flow line as shown in the Figure 9.3.
The distance between the two points is 35 m and the average hydraulic
gradient between the two points is 0.1. Knowing that the pressure head at
point A is 70 kPa, calculate the pore water pressure at point B. What is the
height of water in a standpipe piezometer positioned at point B?

9.2 Two 0.5-m-thick soil layers are subjected to a steady-state flow condition
with a constant head hL = 1.5 m as shown in Figure 9.27. The top layer
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Water

hL = 1.5 m

z 0.5 m

0.5 m

A

B

C
Datum

Soil 1

k1 = 10−3 m/s

Soil 2

k2 = 2k1

FIGURE 9.27

has k1 = 0.001 m/s and the bottom layer has k2 = 2k1. Calculate the pore
water pressure at point C located at the interface between the two layers.

9.3 Three 0.2-m-thick soil layers are subjected to a steady-state flow condition
with a constant head hL = 1.5 m. The top layer has k1 = 0.001 m/s, the
middle layer has k2 = 2k1, and the bottom layer has k3 = 3k1. Calculate the
equivalent permeability for the case of water flowing perpendicular to soil
stratification (Figure 9.8) and for the case of water flowing parallel to soil
stratification (Figure 9.9).

9.4 Refer to Figure 9.11b. Calculate the head h that will cause the 2-m-thick
soil layer to heave (total loss of strength). The saturated unit weight of the
soil is 17.9 kN/m3.

9.5 The seepage force per unit volume is given as iγw . Calculate the average
seepage force in the exit element shown in Figure 9.14b.

9.6 Calculate the pore water pressure distribution on both sides of the sheet pile
shown in Figure 9.14b.

9.7 As shown in Figure 9.28, a row of sheet piles is embedded in a 4-m-thick
soil layer with k = 10−3 cm/s. The embedment length of the sheet piles is
d. The row of sheet piles is very long in the direction perpendicular to the
figure. Establish a flow net and calculate the flow rate per unit length and
the exit hydraulic gradient (a) with d = 1 m, (b) with d = 2 m, and (c) with
d = 3 m. Which case has the maximum flow rate per unit length? Which
case has the maximum exit hydraulic gradient?

9.8 A row of sheet piles is embedded in a two-layer soil system as shown in
Figure 9.29. The embedment length of the sheet piles is 2 m. The row of
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FIGURE 9.29

sheet piles is very long in the direction perpendicular to the figure. The top
soil layer has k1 = 0.001 cm/s, and the bottom layer has k2 = 0.1k1. Using
the finite element method, establish a flow net for this layered soil system.
Calculate the flow rate per unit length and the exit hydraulic gradient.

9.9 Calculate the flow rate and the exit hydraulic gradient for the circular cof-
ferdam shown in Figure 9.30. The radius of the cofferdam is 2 m and its
embedment length is 2 m. The soil layer is 4 m thick and its permeability
is 10−3 m/s. Use the finite element method to establish the flow net. [Hint :
The problem is axisymmetric.]

9.10 The concrete dam shown in Figure 9.31 is very long in the direction nor-
mal to the figure. The permeable soil under the dam is 25 m thick with
k = 10−3 cm/s and underlain by an impermeable layer. To control seepage
through the soil under the dam, a row of sheet piles is embedded at the
toe of the dam with an embedment length of 10 m. Calculate (a) the flow
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rate per unit length through the soil under the dam, (b) the exit hydraulic
gradient, and (c) the pore water pressure distribution exerted on the bottom
surface of the dam.

9.11 Using the finite element method, establish the phreatic surface for each
of the two homogeneous earth dams shown in Figure 9.32. The first dam
includes a drainage blanket to control seepage. Both dams are constructed
using the same soil having k = 5 × 10−3 cm/s. The dams are underlain by
an impermeable (nonfissured) rock.

9.12 Two infinitely long parallel rows of sheet piles are embedded in a 6-m-thick
permeable soil layer underlain by an impermeable layer (Figure 9.33). The
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embedment length of the sheet pile row on the left-hand side is 4 m, while
the embedment length of the sheet pile row on the right-hand side is 3 m.
Calculate the flow rate into the trench per unit length. Also calculate the
exit hydraulic gradient at each side of the trench.
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AASHTO classification, 14
Active earth pressure:

Coulomb, 246–248
Rankine, 242–245

Activity, 14
A-line, 15–16
α-method, 291, 310, 304
Angle of friction:

consolidated-undrained, 181
definition, 168
drained, 175

Anisotropic soil, flow net, 354
Associated plastic flow:

Cam clay, 40, 61
cap model, 64

Atterberg limits, 8, 12, 14
Average degree of consolidation, 127, 134, 135,

137

Bearing capacity of shallow foundations:
depth factor, 225
effect of water table, 229
factors, Meyerhof, 224
factors, Terzaghi, 212
general equation (Meyerhof), 224
inclination factor, 225
shape factor, 224
Terzaghi’s equation, 211

β-method, 297, 304
Boussinesq’s solution, 102
Bulk modulus, 38–39

Cam clay model (see modified Cam clay and
Extended Cam clay models)

Cap model (see modified cap model)
Capillary rise, 99–101
Characteristics equation:

strain, 57
stress, 53

Chemical weathering, 1–2
Classification, 8, 13–15, 18
Clay mica, 2, 11
Clay mineral, 11, 14
Coefficient:

consolidation, 126, 130
Coulomb’s active pressure, 246
Coulomb’s passive pressure, 252
earth pressure at rest, 236
gradation, 10
Rankine active pressure, 242
Rankine passive pressure, 249
volume compressibility, 125

Cohesion, 168
Compaction:

compaction effort, 17
general principles, 16
modified Proctor test, 16
maximum dry unit weight, 17
optimum moisture content, 17
relative, 18
standard Proctor test, 16

Cone penetration test, 187
Consistency, 11

381

Applied Soil Mechanics: with ABAQUS Applications.  Sam Helwany
© 2007 John Wiley & Sons, Inc. ISBN: 978-0-471-79107-2



382 INDEX

Consolidated-drained triaxial test, 172
Consolidated-undrained triaxial test,

180
Consolidation:

Coefficient of consolidation, 126
degree of consolidation, 126
laboratory test, 127
logarithm-of-time method, 130
overconsolidation ratio, 30, 129
preconsolidation pressure, 129
secondary consolidation, 128
settlement calculation, 131
square-root-of-time method, 130
time rate of consolidation, 125
void ratio-pressure plot, 129

Constitutive equations, 21
Constrained modulus, 135
Continuity equation, Laplace, 346
Coulomb’s earth pressure:

active, 246
passive, 252

Coupled analysis, 132, 136, 188
Critical hydraulic gradient, 99, 346
Critical state definition, 34
Critical state line, 33

Darcy’s law, 337
Decomposition:

strain, 57
stress, 55

Degree of consolidation, 126–127
Degree of saturation, 4
Density:

relative density, 7
water density, 1

Depth of tension crack, 244
Determination of parameters:

Lade’s model, 77
modified cam clay, 39–40
modified cap model, 198

Deviatoric strain invariants, 57
Deviatoric strain matrix, 58
Deviatoric stress invariants, 53
Deviatoric stress matrix, 55
Dilation, 62, 86, 166, 200
Direct shear test, 163
Drained friction angle, 175
Drilled shaft foundation, 313
Drucker-Prager model, 61
Dry unit weight, 4

Earth dam, seepage, 332, 355
Earth pressure at rest, 236
Effective stress, 93,189

Elastic:
behavior, 39, 61, 68, 75
material, 11, 23, 38
strain, 22, 23, 28

Elevation head, 333
Empirical relations for permeability, 337, 338
Equipotential line, 349
Equivalent coefficient of permeability, 340–342
Extended Cam clay model, 58

Failure criterion:
cap model (Drucker-Prager), 66
extended Cam clay, 58
Lade’s model, 68
modified Cam clay, 35
Mohr-Coulomb, 35, 162

Falling head test, 340
Failure surface, 211, 228
Field unit weight:

nuclear method, 19
rubber balloon method, 18
sand cone method, 18

Field vane shear test, 187
Flow channel, 349–350
Flow line, 349
Flow net, 349
Flow rule:

cap model (Drucker-Prager), 63
extended Cam clay, 58
Lade’s model, 69
modified Cam clay, 40

Generalized Hooke’s law, 23, 24
Geotextile, 276
Geosynthetics, 271
Geosynthetic-reinforced retaining walls, 271
Gravel, 2

Hardening:
cap model (Drucker-Prager), 62
extended Cam clay, 59
Lade’s model, 68
modified Cam clay, 36

Hazen’s equation, 337
Head:

elevation, 333
pressure, 333
velocity, 333

Heaving factor of safety, 353
Hooke’s law (generalized), 23, 24
Hydraulic gradient, 334–335
Hydrometer analysis, 10
Hydrostatic compression, 65, 75
Hydrostatic stress matrix, 55
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Igneous rock, 2
Illite, 11
Index:

compression index, 31
liquidity index, 13
plasticity index, 13
swelling index, 31

Initial yield surface:
cap model (Drucker-Prager), 67
extended Cam clay, 58
Lade’s model, 72
modified Cam clay, 36

Invariants:
strain invariants, 57
stress invariants, 53

Isotropic consolidation (compression), 21, 30, 31,
42

Kaolinite, 11
Kozeny-Carman equation, 338

Laboratory test, consolidation, 127
Lade’s model, 68
Laminar flow, 337
Laplace’s equation of continuity, 346
Line load, 104
Linear elastic, 23
Liquidity index, 13
Liquid limit, 12
Logarithm-of-time method (consolidation),

130

Magma, 2
Major principal stress, 177
Mat foundation, 209
Maximum dry unit weight, compaction, 17–18
Mean effective stress, 29
Metamorphic rock, 2
Minor principal stress, 53, 214, 236
Modified Cam clay model, 28
Modified cap model, 61
Modified Proctor test, 16
Modulus of elasticity, 23
Mohr-Coulomb failure criteria, 35, 66, 168–169,

175
Mohr’s circle, 175
Moist unit weight, 101
Moisture content, 4
Montmorillonite, 1, 11, 14

Nonaccociated flow (cap model), 64
Nonwoven geotextile, 271
Normally consolidated clay, 30, 174
Normal stress, 22, 177

Normality rule, 40–41
Nuclear density method, compaction, 19

Oedometer (see consolidation laboratory test)
Optimum moisture content, 17, 18
Overconsolidated clay, 30, 129
Overconsolidation ratio, 129

Particle shape, 333
Particle size distribution curve, 2, 8
Passive pressure:

Coulomb, 252
Rankine, 249

Peak shear strength, 166, 175
Percent finer, 8, 14
Permeability test:

constant head, 338
falling head, 339
pumping from wells, 339

Piezometer, 124
Pile:

end-bearing, 286
friction, 286
group, 301
load capacity, 291

Plane strain, 25
Plane stress, 27
Plastic behavior, 61, 75
Plasticity chart, 13
Plasticity index, 13
Plastic limit, 12
Plastic potential function:

cap model (Drucker-Prager), 63–64
extended Cam clay, 61
Lade’s model, 69
modified Cam clay, 37

Pneumatic roller, 16
Point load, stress, 102
Poisson’s ratio, 24
Poorly graded soil, 9, 14
Pore water pressure:

definition, 93
in zone of capillary rise, 99–100

Porosity, 3
Potential drop, 350
Preconsolidation pressure:

definition of, 30, 129
graphical construction for, 129–130

Pressure head, 333
Principal stress, 55
Principal stress space, 58, 59, 69

Rankine active state, 242
Rankine theory:



384 INDEX

Rankine theory: (continued )
active pressure, 242
coefficient of active pressure, 244
coefficient of passive pressure, 249
depth of tension crack, 244
passive pressure, 249

Rectangular loaded area, stress, 116
Relative compaction, 18
Relative density, 7
Retaining wall:

cantilever, 233, 234, 253
counterfort, 233, 234
geosynthetic-reinforced soil, 271
gravity, 233, 234

Roller:
pneumatic, 16
sheepsfoot, 16
smooth-wheel, 16

Rubber balloon method, field unit test, 19

Sand, 2
Sand cone method, 18
Saturation, degree of, 4
Secondary compression (consolidation), 128
Sedimentary rock, 2
Seepage:

force, 97, 345–346, 373
through earth dam, 355
velocity, 342

Settlement calculation (consolidation), 131–132
Shallow foundation:

general shear failure, 209–210
local shear failure, 211
punching shear failure, 211

Shear modulus, 24, 38, 51, 72
Shear stress, 22
Sheepsfoot roller, 16
Shinkage limit, 12
Sieve analysis, 8, 10
Sieve size, 8
Silica, 1, 2
Silt, 2, 10, 13
Slip plane (failure surface), 211, 228
Smooth roller, 16
Softening behavior:

Lade’s model, 74
modified cam clay, 36
modified cap model, 62–64

Specific gravity:
definition, 4
typical values for, 4

Specific surface, 11
Square-root-of-time method, 130
Standard penetration number, 187

Standard Proctor test, 16–17
State boundary surface, 33, 36
Stoke’s law, 10
Strain:

decomposition, 57
deviatoric, 58
invariants, 57
matrix, 57

Stress:
decomposition, 55
deviatoric, 55
invariants, 55–57
line load, 104
matrix, 22
Mohr’s circle, 175
path, 29, 47
point load, 102
principal, 177
rectangularly loaded area, 116
shear plane (failure plane), 164, 177
strip load, 114
uniformly loaded circular area, 109

Stress path:
CD triaxial test, 29, 37
CU triaxial test, 47

Surface (capillary) tension, 372
Swell index, 31, 40, 130

Tension (tensile) crack, 244
Theory of elasticity, 22
Theory of plasticity, 28
Time factor, 126
Time rate of consolidation, 125–127
Total stress, 90
Triaxial test:

consolidated-drained, 29, 42, 172
consolidated-undrained, 34, 47, 180
general, 170
unconsolidated-undrained, 185, 186

Ultimate strength, 166, 175
Unconfined compression strength,

186
Unconfined compression test, 186
Unconsolidated-undrained test, 185
Undrained shear strength, 185–189
Uniaxial stress, 24
Unified classification system, 14
Uniformity coefficient, 10
Uniformly loaded circular area, 109
Unit weight:

definition, 4
dry, 4
saturated, 6
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Vane shear test, 187
Velocity:

flow, 342
head, 333
seepage, 343

Void ratio, 3
Void ratio-pressure plot, 30, 129

Wall yielding, active earth pressure, 241–242,
249

Wall friction, passive earth pressure, 253
Weathering, 1, 2

Well graded, 10, 14
Work:

hardening, Lade’s model, 72
plastic, 68
softening, Lade’s model, 74

Yield surface:
cap model, 61–62
extended Cam clay, 58–59
Lade’s model, 68
modified Cam clay, 35

Young’s modulus, 23, 24
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AASHTO classification, 14
Active earth pressure:

Coulomb, 246–248
Rankine, 242–245

Activity, 14
A-line, 15–16
α-method, 291, 310, 304
Angle of friction:

consolidated-undrained, 181
definition, 168
drained, 175

Anisotropic soil, flow net, 354
Associated plastic flow:

Cam clay, 40, 61
cap model, 64

Atterberg limits, 8, 12, 14
Average degree of consolidation, 127, 134, 135,

137

Bearing capacity of shallow foundations:
depth factor, 225
effect of water table, 229
factors, Meyerhof, 224
factors, Terzaghi, 212
general equation (Meyerhof), 224
inclination factor, 225
shape factor, 224
Terzaghi’s equation, 211

β-method, 297, 304
Boussinesq’s solution, 102
Bulk modulus, 38–39

Cam clay model (see modified Cam clay and
Extended Cam clay models)

Cap model (see modified cap model)
Capillary rise, 99–101
Characteristics equation:

strain, 57
stress, 53

Chemical weathering, 1–2
Classification, 8, 13–15, 18
Clay mica, 2, 11
Clay mineral, 11, 14
Coefficient:

consolidation, 126, 130
Coulomb’s active pressure, 246
Coulomb’s passive pressure, 252
earth pressure at rest, 236
gradation, 10
Rankine active pressure, 242
Rankine passive pressure, 249
volume compressibility, 125

Cohesion, 168
Compaction:

compaction effort, 17
general principles, 16
modified Proctor test, 16
maximum dry unit weight, 17
optimum moisture content, 17
relative, 18
standard Proctor test, 16

Cone penetration test, 187
Consistency, 11
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Consolidated-drained triaxial test, 172
Consolidated-undrained triaxial test,

180
Consolidation:

Coefficient of consolidation, 126
degree of consolidation, 126
laboratory test, 127
logarithm-of-time method, 130
overconsolidation ratio, 30, 129
preconsolidation pressure, 129
secondary consolidation, 128
settlement calculation, 131
square-root-of-time method, 130
time rate of consolidation, 125
void ratio-pressure plot, 129

Constitutive equations, 21
Constrained modulus, 135
Continuity equation, Laplace, 346
Coulomb’s earth pressure:

active, 246
passive, 252

Coupled analysis, 132, 136, 188
Critical hydraulic gradient, 99, 346
Critical state definition, 34
Critical state line, 33

Darcy’s law, 337
Decomposition:

strain, 57
stress, 55

Degree of consolidation, 126–127
Degree of saturation, 4
Density:

relative density, 7
water density, 1

Depth of tension crack, 244
Determination of parameters:

Lade’s model, 77
modified cam clay, 39–40
modified cap model, 198

Deviatoric strain invariants, 57
Deviatoric strain matrix, 58
Deviatoric stress invariants, 53
Deviatoric stress matrix, 55
Dilation, 62, 86, 166, 200
Direct shear test, 163
Drained friction angle, 175
Drilled shaft foundation, 313
Drucker-Prager model, 61
Dry unit weight, 4

Earth dam, seepage, 332, 355
Earth pressure at rest, 236
Effective stress, 93,189

Elastic:
behavior, 39, 61, 68, 75
material, 11, 23, 38
strain, 22, 23, 28

Elevation head, 333
Empirical relations for permeability, 337, 338
Equipotential line, 349
Equivalent coefficient of permeability, 340–342
Extended Cam clay model, 58

Failure criterion:
cap model (Drucker-Prager), 66
extended Cam clay, 58
Lade’s model, 68
modified Cam clay, 35
Mohr-Coulomb, 35, 162

Falling head test, 340
Failure surface, 211, 228
Field unit weight:

nuclear method, 19
rubber balloon method, 18
sand cone method, 18

Field vane shear test, 187
Flow channel, 349–350
Flow line, 349
Flow net, 349
Flow rule:

cap model (Drucker-Prager), 63
extended Cam clay, 58
Lade’s model, 69
modified Cam clay, 40

Generalized Hooke’s law, 23, 24
Geotextile, 276
Geosynthetics, 271
Geosynthetic-reinforced retaining walls, 271
Gravel, 2

Hardening:
cap model (Drucker-Prager), 62
extended Cam clay, 59
Lade’s model, 68
modified Cam clay, 36

Hazen’s equation, 337
Head:

elevation, 333
pressure, 333
velocity, 333

Heaving factor of safety, 353
Hooke’s law (generalized), 23, 24
Hydraulic gradient, 334–335
Hydrometer analysis, 10
Hydrostatic compression, 65, 75
Hydrostatic stress matrix, 55
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Igneous rock, 2
Illite, 11
Index:

compression index, 31
liquidity index, 13
plasticity index, 13
swelling index, 31

Initial yield surface:
cap model (Drucker-Prager), 67
extended Cam clay, 58
Lade’s model, 72
modified Cam clay, 36

Invariants:
strain invariants, 57
stress invariants, 53

Isotropic consolidation (compression), 21, 30, 31,
42

Kaolinite, 11
Kozeny-Carman equation, 338

Laboratory test, consolidation, 127
Lade’s model, 68
Laminar flow, 337
Laplace’s equation of continuity, 346
Line load, 104
Linear elastic, 23
Liquidity index, 13
Liquid limit, 12
Logarithm-of-time method (consolidation),

130

Magma, 2
Major principal stress, 177
Mat foundation, 209
Maximum dry unit weight, compaction, 17–18
Mean effective stress, 29
Metamorphic rock, 2
Minor principal stress, 53, 214, 236
Modified Cam clay model, 28
Modified cap model, 61
Modified Proctor test, 16
Modulus of elasticity, 23
Mohr-Coulomb failure criteria, 35, 66, 168–169,

175
Mohr’s circle, 175
Moist unit weight, 101
Moisture content, 4
Montmorillonite, 1, 11, 14

Nonaccociated flow (cap model), 64
Nonwoven geotextile, 271
Normally consolidated clay, 30, 174
Normal stress, 22, 177

Normality rule, 40–41
Nuclear density method, compaction, 19

Oedometer (see consolidation laboratory test)
Optimum moisture content, 17, 18
Overconsolidated clay, 30, 129
Overconsolidation ratio, 129

Particle shape, 333
Particle size distribution curve, 2, 8
Passive pressure:

Coulomb, 252
Rankine, 249

Peak shear strength, 166, 175
Percent finer, 8, 14
Permeability test:

constant head, 338
falling head, 339
pumping from wells, 339

Piezometer, 124
Pile:

end-bearing, 286
friction, 286
group, 301
load capacity, 291

Plane strain, 25
Plane stress, 27
Plastic behavior, 61, 75
Plasticity chart, 13
Plasticity index, 13
Plastic limit, 12
Plastic potential function:

cap model (Drucker-Prager), 63–64
extended Cam clay, 61
Lade’s model, 69
modified Cam clay, 37

Pneumatic roller, 16
Point load, stress, 102
Poisson’s ratio, 24
Poorly graded soil, 9, 14
Pore water pressure:

definition, 93
in zone of capillary rise, 99–100

Porosity, 3
Potential drop, 350
Preconsolidation pressure:

definition of, 30, 129
graphical construction for, 129–130

Pressure head, 333
Principal stress, 55
Principal stress space, 58, 59, 69

Rankine active state, 242
Rankine theory:
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Rankine theory: (continued )
active pressure, 242
coefficient of active pressure, 244
coefficient of passive pressure, 249
depth of tension crack, 244
passive pressure, 249

Rectangular loaded area, stress, 116
Relative compaction, 18
Relative density, 7
Retaining wall:

cantilever, 233, 234, 253
counterfort, 233, 234
geosynthetic-reinforced soil, 271
gravity, 233, 234

Roller:
pneumatic, 16
sheepsfoot, 16
smooth-wheel, 16

Rubber balloon method, field unit test, 19

Sand, 2
Sand cone method, 18
Saturation, degree of, 4
Secondary compression (consolidation), 128
Sedimentary rock, 2
Seepage:

force, 97, 345–346, 373
through earth dam, 355
velocity, 342

Settlement calculation (consolidation), 131–132
Shallow foundation:

general shear failure, 209–210
local shear failure, 211
punching shear failure, 211

Shear modulus, 24, 38, 51, 72
Shear stress, 22
Sheepsfoot roller, 16
Shinkage limit, 12
Sieve analysis, 8, 10
Sieve size, 8
Silica, 1, 2
Silt, 2, 10, 13
Slip plane (failure surface), 211, 228
Smooth roller, 16
Softening behavior:

Lade’s model, 74
modified cam clay, 36
modified cap model, 62–64

Specific gravity:
definition, 4
typical values for, 4

Specific surface, 11
Square-root-of-time method, 130
Standard penetration number, 187

Standard Proctor test, 16–17
State boundary surface, 33, 36
Stoke’s law, 10
Strain:

decomposition, 57
deviatoric, 58
invariants, 57
matrix, 57

Stress:
decomposition, 55
deviatoric, 55
invariants, 55–57
line load, 104
matrix, 22
Mohr’s circle, 175
path, 29, 47
point load, 102
principal, 177
rectangularly loaded area, 116
shear plane (failure plane), 164, 177
strip load, 114
uniformly loaded circular area, 109

Stress path:
CD triaxial test, 29, 37
CU triaxial test, 47

Surface (capillary) tension, 372
Swell index, 31, 40, 130

Tension (tensile) crack, 244
Theory of elasticity, 22
Theory of plasticity, 28
Time factor, 126
Time rate of consolidation, 125–127
Total stress, 90
Triaxial test:

consolidated-drained, 29, 42, 172
consolidated-undrained, 34, 47, 180
general, 170
unconsolidated-undrained, 185, 186

Ultimate strength, 166, 175
Unconfined compression strength,

186
Unconfined compression test, 186
Unconsolidated-undrained test, 185
Undrained shear strength, 185–189
Uniaxial stress, 24
Unified classification system, 14
Uniformity coefficient, 10
Uniformly loaded circular area, 109
Unit weight:

definition, 4
dry, 4
saturated, 6
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Vane shear test, 187
Velocity:

flow, 342
head, 333
seepage, 343

Void ratio, 3
Void ratio-pressure plot, 30, 129

Wall yielding, active earth pressure, 241–242,
249

Wall friction, passive earth pressure, 253
Weathering, 1, 2

Well graded, 10, 14
Work:

hardening, Lade’s model, 72
plastic, 68
softening, Lade’s model, 74

Yield surface:
cap model, 61–62
extended Cam clay, 58–59
Lade’s model, 68
modified Cam clay, 35

Young’s modulus, 23, 24




