Workshop

This module demonstrates the HYSYS philosophy for building reactions within a simulation. HYSYS defines reactions within the context of the Fluid Package. This is important for a number of reasons:

- By associating reactions with the fluid system rather than a specific "reactor" unit operation, the user is free to model reactions anywhere they might take place: in flash tanks, tray sections, reboilers etc., as well as in reactors. Reactions are defined and simply *attached* to the equipment piece.
- By defining the reactions up front in the fluid system, the reactions need only be defined once, rather than each time a reactor unit is built. Additionally, any changes to the basic reaction data are updated throughout the model automatically.
- By separating the reaction definitions from the unit operations or model topology, component and reaction data may be saved out as an independent file for use in another case. The user can then create a reaction library or database for future use, thereby eliminating a repetitive task, reducing engineering time and working more efficiently.

This module presents Steam-Methane Reforming.

Learning Objectives

Once you have completed this section, you will be able to:

- Define reactions in HYSYS
- Model Conversion and Equilibrium reactors in HYSYS.

Prerequisites

Before beginning this section you need to know how to:

- Create a Fluid Package
- Add streams
- Add Unit Operations

Reactions and Reactors

There are five different types of reactors that can be simulated with HYSYS. By using combinations of these five reactors, virtually any reactor can be modelled within HYSYS. The five reactor types are:

- Conversion given the stoichiometry of all the reactions occurring and the conversion of the base component, calculates the composition of the outlet stream.
- **Equilibrium** determines the composition of the outlet stream given the stoichiometry of all reactions occurring and the value of equilibrium constant (or the temperature dependant parameters that govern the equilibrium constant) for each reaction.
- **Gibbs** evaluates the equilibrium composition of the outlet stream by minimizing the total Gibbs free energy of the effluent mixture.
- CSTR computes the conversion of each component entering the reactor. The conversion in the reactor depends on the rate expression of the reactions associated with the reaction type.
- **PFR** assumes that the reaction streams pass through the reactor in plug flow in computing the outlet stream composition, given the stoichiometry of all the reactions occurring and a kinetic rate constant for each reaction.

Note: The required input is different depending on the type of reactor that is chosen. CSTR and PFR reactors must have kinetic rate constants (or the formula to determine the kinetic rate constant) as inputs, as well as the stoichiometry of the reactions. All of the reactor types, except for the Gibbs type, must have the reaction stoichiometry as inputs.

Reactions can also occur in the Tank, Separator, and Three Phase Separator Unit Operations if a reaction set is attached.

Note that Kinetic, Kinetic RevEqb, and Langmuir-Hinshelwood reactions can only be modelled in the CSTR, PFR and Separator.

Process Overview

Steam-Methane Reformer

Steam reformation of methane is often undertaken in conjunction with processes which require large amounts of hydrogen – for instance hydrotreating, ammonia production, or any process which may utilise such a synthesis gas. Successive reaction stages take advantage of thermodynamics and catalysts to enhance the production of hydrogen at the expense of the by-product gases carbon monoxide and dioxide. Finally, remaining carbon oxides are converted back into methane as completely as possible to minimise CO and CO_2 carryover into the downstream process.

In the course of this problem, we will use two of the reactor types in HYSYS to simulate the reactors in the steam reformation train: the **Conversion** and **Equilibrium** reactors.

Building the Simulation

Defining the Simulation Basis

For this simulation we will use the Peng Robinson EOS with the following components: **methane**, **carbon monoxide**, **carbon dioxide**, **hydrogen** and **water**. The Fluid Package that you defined can be renamed to Steam-C1 reformer.

Adding the Reactions

 $\begin{tabular}{|c|c|c|c|c|} \hline Reaction & Reaction \\ \hline Reform1 & CH_4 + H_2O - --> CO + 3H_2 \\ \hline Reform2 & CO + H_2O - --> CO_2 + H_2 \\ \hline Shift1 & CO + H_2O < ---> CO_2 + H_2 \\ \hline Meth1 & CO + 3H_2 - --> H_2O + CH_4 \\ \hline \end{tabular}$

The reactions which take place in this simulation are:

Reactions in HYSYS are added in a manner very similar to the method used to add components to the simulation:

1. Open the Fluid Package and select the **Rxns** tab. Press the *Simulation Basis Mgr* button to open component selection view. Here, we will select the components that we will have use in our reactions.

2. Press the *Add Comps* button, and ensure that the *FPkg Pool* radio button is selected. Press the *Add This Group of Components* button. This moves the entire component list over to the Selected Reaction Components group.

Reaction Component Sel	ection		
Selected <u>Reaction</u> Components	s C 1	Components Associated with the Fluid Pac Available Fluid Pkos	kages Associated Components
CO2 - Add CO2 - Add Hydrogen 6 F H20 C L Ren S	Comps	Steam-C1 reformer	Methane CD CD2 Hydrogen H2D

3. Return to the **Simulation Basis Manager** view and press the *Add Rxn* button. Choose **Equilibrium** as the type from the displayed list.

4.	Press the Add Reaction button and enter the necessary
	information as shown:

<u>ē</u> 0	Equilibrium Reaction:	Reform1		
				~
Г	Stoichiometry			
	Component	Mole Weight	Stoich Coeff	
	Methane	16.043	-1.000	_
	H20	18.015	-1.000	
	CO	28.011	1.000	
	Hydrogen	2.016	3.000	
	Add Comp			_
	1			
	1	Balance Error	0.00000	
	B <u>a</u> lance	Reaction Heat	2.1e+05 kJ/kgmole	
-		, , ,		
	Stoichiometry Basis	Ln(K) Table Libr	ary_/	
	Delete <u>N</u> ame Reform	n1 F	eady K Tab	le

This has defined the stoichiometry of the first reaction:

$$CH_4 + H_2O - --> CO + 3H_2$$

Note that reactants are defined with negative coefficients and products have positive coefficients; this is the HYSYS standard. All reactions must be defined this way.

5. Move to the **Basis** tab and click the *Kvs T Table* radio button.

Temperature, °C (°F)	Keq
595°C (1100°F)	0.5
650°C (1200°F)	3
705°C (1300°F)	14
760°C (1400°F)	63
815°C (1500°F)	243
870°C (1600°F)	817

6. On the **Table** tab, enter the following values:

7. Add the second **Equilibrium** reaction by selecting the reaction type as **Equilibrium**.

$$CO + H_2O ---> CO_2 + H_2$$

8. For reaction 2, proceed as above and enter the following values for the **Equilibrium Constant**:

Temperature, °C (°F)	Keq
675°C (1250°F)	1.7
705°C (1300°F)	1.5
730°C (1350°F)	1.3
760°C (1400°F	1.2
790°C (1450°F)	1.1
815°C (1500°F)	1.0

The name of this reaction can be changed to Reform 2.

In the absence of a catalyst and at 430 $^{\circ}$ C (800 $^{\circ}$ F), the rate of reaction number 1 in the Shift Reactor is negligible, and reaction number 2 becomes the only reaction.

HYSYS contains a library of some of the most commonly encountered chemical reactions with their Equilibrium Constants. For the Shift Reactor, you will use the library values for the Equilibrium Constant.

- 9. Add the third **Equilibrium** reaction by selecting the reaction type as **Equilibrium**. On the **Library** tab, highlight the reaction with the form $CO + H_2O = CO_2 + H_2$. Press the *Add Library Rxn* button. This adds the reaction and all of the reaction's data to the simulation.
- 10. Rename the reaction **Shift1**.
- 11. Add a **Conversion** reaction for the reverse of reaction number 1. The reaction is:

$$CO + 3H_2 ---> H_2O + CH_4$$

12. Move to the **Basis** tab and enter **CO** as the **Base Component** and **100** as the % **Conversion**.

Conversion Reaction: M	eth1	
CO		<u>_</u>
Basis		
Base Component		CO
Conversion (%)		100.00
Rxn Phase		Overall
Stoichiometry Basis		
Delete Name	leth1	Ready

Reaction Sets may contain more than one Reaction. There is limited flexibility for the mixing of reaction types within a Reaction Set.

- Equilibrium and Kinetic reactions can be within a single reaction set
- Conversion reactions cannot be in the same set as other reaction types

13. Rename this reaction Meth1.

Adding the Reaction Sets

Once all three reactions are entered and defined, you can create reaction sets for each type of reactor.

1. On the **Reactions** page of the Simulation Basis Manager, press the *Add Set* button. Name the first Set **Reformer Rxn Set**, and add **Reform1** and **Reform2**.

Reactions are added by highlighting the **<empty>** field in the **Active List** group, and selecting the desired reaction from the drop down list. The

Reaction Set: Reformer Rxn Set

view should look like this after you have finished:

Reform1				<u> </u>
Name Reformer Rx	n Set			
Set Info				
Set Type Solver Method		Equilibrium Default	Ready Independen	Advanced
Active List	OK	Inactiv	ve List	Operations Attached
Reform1 Reform2			<empty></empty>	Reformer
<empty></empty>				
View Active		View I	nactive	
Make Inactive ->		<u>≺</u> -Ma	ke Active	

---- X

2. Create two more reaction sets with the following information:

Name	Active List
Shift Rxn Set	Shift1
Methanator Rxn Set	Meth1

Attaching Reaction Sets to the Fluid Package

After the three reaction Sets have been created, they must be added to the current fluid package in order for HYSYS to use them.

- 1. On the **Reactions** page of the **Simulation Basis Manager** view, highlight the **Reformer Rxn Set** and press the *Add to FP* button.
- 2. Select the only available Fluid Package and press the *Add Set to Fluid Package* button.
- 3. Repeat Steps 1 and 2 to add all three reaction sets (Reformer, Shift and Methanator).

Once all three reaction sets are added to the Fluid Package, you can enter the Simulation Environment and begin constructing the simulation.

Adding the Unit Operations

Add the Feed Streams

Create two new material streams with the following information:

In This Cell	Enter	
Conditions		
Name	Natural Gas	
Temperature	20°C (70°F)	
Pressure	520 kPa (75 psia)	
Mass flow	800 kg/h (1765 lb/hr)	
Composition		
Mass Fraction CH_4	1.0	
Name	Steam	
Temperature	180°C (360°F)	
Pressure	965 kPa (140 psia)	
Composition		

Add a Mixer

Mass Fraction H_2O

In This Cell	Enter
Connections	
Name	Mix-100
Inlet	Natural Gas / Steam
Outlet	Mixed Feed

1.0

On the **Parameters** page, select the *Set Outlet to Lowest Inlet* radio button.

Add a Heater

A Heater is needed to heat the feed to the reaction temperature.

Add a Heater with the following information:

In This Cell	Enter
Connections	
Name	HX1
Inlet	Mixed Feed
Energy	HX1-Q
Outlet	Reform Feed
Parameters	
Delta P	10 kPa (1.5 psi)
Worksheet	
Reform Feed, Temperature	760°C (1400°F)

Add a Set Operation

A Set operation is needed to fix the steam rate relative to the methane feed rate.

Add a Set operation with the following information:

In This Cell	Enter
Connections	
Name	SET-1
Target Object	Steam, Molar Flow
Source	Natural Gas
Parameters	
Multiplier	2.5
Offset	0.0 kgmole/h (0.0 lbmole/hr)

The Reform Feed stream should now be completely defined.

Add the Steam Reformer

An Equilibrium Reactor will be used to simulate the Steam Reformer.

From the Object Palette, click **General Reactors**. Another palette appears with three reactor types: **Gibbs**, **Equilibrium** and **Conversion**. Select the **Equilibrium Reactor**, and enter it into the PFD. Make the following connections:

In This Cell	Enter
Connections	
Name	Reformer
Inlet	Reform Feed
Vapour Outlet	Reform Prod
Liquid Outlet	Reform Liq
Energy	Reform Q
Parameters	
DeltaP	70 kPa (10 psi)

General Reactors button

General Reactors palette

Reactions	

- 1. On the **Parameters** page, select the *Heating* radio button for the Duty.
- 2. On the **Worksheet** tab, set the temperature of **Reform Prod** to **760°C** (1400°F).
- 3. On the **Reactions** tab, select the **Reformer Rxn Set** as the Reaction Set. This will automatically connect the proper reactions to this Reactor and the Reactor will solve.

14

What is the % conversion of Methane? _____

How much CO and H_2 were produced in the reaction; i.e. what is the molar flowrate of these two compounds in the reactor's product stream? ______ & _____

Add a Cooler

Add a Cooler to cool the stream **Reform Prod** down to the Shift Reactor's temperature. Enter the connections with the following information:

In This Cell	Enter	
Connections		
Name	HX2	
Inlet	Reform Prod	
Energy	HX2-Q	
Outlet	Shift Feed	
Parameters		
Delta P	24 kPa (3.5 psi)	
Worksheet		
Shift Feed	427°C (800°F)	

Add the Shift Reactor

Another Equilibrium Reactor will be used to model the Shift Reactor.

Add an Equilibrium Reactor with the following data:

In This Cell	Enter	
Connections		
Name	Shift	
Inlet	Shift Feed	
Vapour Outlet	Shift Prod	
Liquid Outlet	Shift Liq	
Energy	Shift Q	
Parameters		
Delta P	70 kPa (10 psi)	
Worksheet		
Shift Prod, Temperature	430°C (800°F)	

- 1. On the **Parameters** page, choose the *Cooling* radio button for the Duty.
- 2. On the **Reactions** tab, select **Shift Rxn Set** as the Reaction Set. This will automatically connect the proper reactions to this reactor.

What is the % conversion of CO in this reactor?

Add a Cooler

Add a **Cooler** to cool the stream Shift Prod down to the Amine Plant's temperature (the Amine Plant will be added next). Make the connections as follows:

In This Cell	Enter	
Connections		
Name	HX3	
Inlet	Shift Prod	
Energy	HX3-Q	
Outlet	Amine Feed	
Parameters		
Delta P	35 kPa (5 psi)	
Worksheet		
Amine Feed, Temperature	38°C (100°F)	

Add the Amine Plant

Add a **Component Splitter** to model the Amine Plant. The purpose of this Splitter is only to remove the CO_2 present in the flow. The connections are shown below:

Enter
Amine Plant
Amine Feed
Sweet Gas
AmPl Q
CO2 Off
297 kPa (43 psia)
297 kPa (43 psia)
138°C (280°F)

On the **Splits** page, specify the **Fraction to Overhead** as **1.0** for **Methane**, **CO**, **Hydrogen** and **H**₂**O**. The "Fraction to Overhead" for the CO_2 must be **0**; this will force all CO_2 to the bottom and all other components to the top.

Add a Heater

A Heater is needed to heat the feed to the Methanator Reactor temperature.

Add a Heater with the following information:

In This Cell	Enter
Connections	
Name	HX4
Inlet	Sweet Gas
Energy	HX4-Q
Outlet	Methanator Feed
Parameters	
Delta P	21 kPa (3 psi)
Worksheet	
Methanator Feed, Temperature	260°C (500°F)

Add the Methanator Reactor

Add a **Conversion** Reactor with the following connections:

Methanator Feed Meth Q	Product Methana Meth Liq	tor	
Vessel Pressure Drop	35.00	kPa	
Product Temperature	280.0	С	

In This Cell	Enter	
Connections		
Name	Methanator	
Inlet	Methanator Feed	
Vapour Outlet	Product	
Liquid Outlet	Meth Liq	
Energy	Meth Q	
Parameters		
Delta P	35 kPa (5 psi)	
Worksheet		
Product, Temperature	280°C (536°F)	

On the **Reactions** tab, choose the **Methanator Rxn Set** from the **Reaction Set** drop down menu.

What is the % conversion of CO?_____

How much Methane was produced in this reactor?

Save your case!

Analysing the Results

Using the Case Study

The Case Study tool allows you to monitor the steady state response of key process variables to changes in your process. You select independent variables to change and dependent variables to monitor. HYSYS varies the independent variables one at a time, and with each change, the dependent variables are calculated.

To illustrate the Case Study tool's capabilities, imagine the following scenario: your boss approaches you one day and asks you to comment on the affects of varying the amount of Steam to the process on the flow of CO2 entering the Amine Plant and the flow of methane leaving the Methanator Reaction. He or she wants to compare steam flow rates of 1.5, 2.0, 2.5, 3.0, 3.5 and 4.0 times that of the natural gas. The bad news is he or she wants the information first thing tomorrow morning (and you have a tee time in one hour). The good news is, you can use the Case Study tool in HYSYS to generate these numbers and still make your tee time!

- 1. From the **Tools** menu select **Databook**, or use the **<Ctrl><D>** Hot Key, to open the **Databook**.
- 2. On the Variables tab, press the *Insert* button to open the Variable Navigator.
- 3. Select **Shift Prod** as the object, **Comp Molar Flow** as the variable, and **CO2** as the variable's specific.

Variable Navigator				_ 🗆 🗙
Flowsheet Case (Main) Navigator Scope Flowsheet Case Basis Utility	Object Reform Q Reformer-Liquid Shift Fed Shift Prod Shift Q Steam SET-1 Amine Plant HX1 HX2 HX4 Methanator MIX-100 Reformer	Variable Actual Gas Flow Actual Volume Flow Actual Volume Flow Actual Volume Flow Comp K Value - Heavy Li Comp K Value - Light Ligh Comp Mass Flow Comp Mole Frac Comp Mole Frac Comp Volume Flow Comp Volume Flow Comp Volume Flow Comp Volume Frac Comp Volume Flow Comp Volume Flow Comp Volume Flow Comp Volume Flow Leat Flow Heat Flow Heat Of Vapourization	V <u>a</u> riable Specifics Methane CO GO2 Hydrogen H2O	<u>Q</u> K <u>A</u> dd Object Filter ⓒ All ⓒ Streams ⓒ UnitOps ⓒ Logicals ⓒ Custom Custom
Variable Description: [Comp Molar Flow (CU2)			<u>C</u> ancel	

Both the independent and the dependent variables are added to the Databook from the Variables tab.

21

4. Add the two remaining variables as shown below: **Product** and **SET-1**.

A,	DataBook			- 🗆 ×
				-
	Available Data Entries Object Product Shift Prod SET-1	Variable Comp Molar Flow (Methane) Comp Molar Flow (CO2) Multiplier	E <u>d</u> it Insert Delete	
-	Variables Process Dat	a Tables Strip Charts Data Recorder Case Studies		

- 5. Switch to the **Case Studies** tab.
- 6. Press the *Add* button to add a new Case Study.
- 7. Select the **Multiplier** of **SET-1** as the **Independent Variable**, and select the remaining two variables as the **Dependant Variables**.

💐 DataBook	
Available Case Studies Case Study 1 Add Delete View	Case Studies Data Selection Current Case Study Deject Variable Ind Dep Product Comp Molar Flow (Methane) Shift Prod Comp Molar Flow (C02) SET-1 Multiplier
Available Displays Table Graph Variables Process Data Tables	Strip Charts Data Recorder Case Studies

Only user supplied variables can be selected as Independent Variables

8. Press the *View* button to setup the Case Study.

🚬 Case Studies Setup - Main					
Case St <u>u</u> dies	Course Church 1			(
Case Study 1	Lase Study I	Nu	mber of States	P	
	Variable	Low Bound	High Bound	Step Size	
	SET-1 - Multiplier	1.500	4.000	0.5000	
	_				
Independent Variables Setup / Display Properties / Failed States /					
Add Delet	e <u>R</u> esults			Start	

Enter values for Low Bound, High Bound, and Step Size of 1.5,
 4.0 and 0.5 respectively.

10. Press the *Results* button to view the calculations.

Exercise

Using the Adjust Operation

In this exercise, we will use the Adjust operation in HYSYS to determine what temperature in the **Shift 1** reactor will produce a molar ratio of hydrogen to methane of 10:1 in the final product.

The **Adjust** operation in HYSYS is similar to a "steady state controller." It will manipulate one process variable (this variable must be specifiable) until another variable is equal to a set target value. In this case, we will manipulate the temperature of the outlet stream from the Shift 1 reactor until the desired molar ratio is achieved in the final product.

Normally, the target variable can be selected using the variable navigator; however, this is not the case here. The molar ratio of methane to hydrogen is not a normal process variable; therefore, we must use the Spreadsheet operation to calculate this value and transfer its value to another location that can be selected using the variable navigator.

The process for doing this will be given here:

- 1. Create a new stream and name it: **Dummy Stream.** We do not need to enter any data for this stream; its sole purpose will be to hold a value from the spreadsheet and make it available to the Adjust operation.
- 2. Add a **Spreadsheet** operation to the flowsheet. We need to import two variable into this spreadsheet. There are several ways to do this; for this exercise, only one method will be illustrated, but keep in mind that this is only one possibility.
- 3. Right click on any spreadsheet cell (an example would be B1). From the menu that appears, select **Import Variable**, and use the variable navigator to choose the Mole Fraction of **Hydrogen** in the **Product** stream.
- 4. In another spreadsheet cell (say B2) import the Mole Fraction of **Methane** of the same stream.
- 5. In a third spreadsheet cell, enter the ratio formula. If you used cells B1 and B2 in the two steps above, the ratio formula will look like this: **+B1/B2**. The current value of this ratio should be around 7.

7.

6. Now, we can export this value as any variable owned by the **Dummy Stream**. Right click on cell that contains the ratio formula, and select **Export Formula Result** from the menu. Use the variable navigator to choose a suitable location for the molar ratio. For this example, we can use **Temperature**.

Notice that the type of variable is not important when exporting to the dummy stream. You should be aware that there could be problems if you tried to exceed the natural limits of the variable type. For example, do not try to export a value greater than 1 or less than 0 into the vapour fraction.

Add the Adjust operation to the flowsheet. Make the following

- In This Cell...Enter...Adjust VariableShift Prod TemperatureTarget VariableDummy Stream TemperatureSpecified Target Value10
- connections:

8. On the **Parameters** tab, enter the following information:

In This Cell	Enter
Method	Secant (default)
Tolerance	0.01
Step Size	25
Maximum Iterations	30

9. Press the *Start* button to begin the calculations. The progress of the calculations can be seen on the **Monitor** tab.

What is the reactor temperature that produces the desired molar ratio?

Save your case!

Challenge

A new application of the **Product** stream has been found. However, it requires that the amount of methane in the stream be less than 1% of the amount of hydrogen. In other words, the molar ratio must be increased to 100.

What happens when the Specified Target Value is changed to 100? _____

What else can be changed to improve the composition of the Product stream? Hint: look at the beginning of this process; remember that the products of a process are influenced by the inputs.

Change the multiplier of the Set-100 operation to 5. Is the Adjust operation now able to converge with a target value of 100?